226 resultados para HYBRID MESONS
Resumo:
Hybrid linear analysis (HLA) was applied to resolution of overlapping spectra of Fe3+-salicylfluorone and Al3+-salicylfluorone complexes and simultaneous spectrophotometric determination of Fe3+ and Al3+. The absorbance matrix of 7 standard mixtures at 41 measuring points ranged from the wavelength of 550 nm to 630 nm was used for calibration. To avoid the effect of interaction between the two components on the determination, the column vector of K matrix obtained from the standard mixtures with least squares was used as the pure spectrum of component. The recoveries of the two elements for the analysis of the synthetic samples were 93.3% similar to 107.5% in the range of the concentration ratio of Fe3+:Al3+ = 10:1 to 1:8. Comparing with the partial least squares (PIS) model, the HLA method was simple, accuracy and precise.
Resumo:
Poly(epsilon -caprolactone) (PCL) and silica (SiO2) organic-inorganic hybrid materials have been synthesized by the sol-gel method. The crystallization behavior of PCL in silica networks has been investigated using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The degree of PCL crystallinity in PCL/SiO2 hybrid networks reduces with increase of SiO2. PCL is in an amorphous state when the concentration of PCL is lower than 40wt% in the hybrid system. The melting point of PCL in the networks is lower than, but close to that of pure PCL. WAXD and SEM results show that the crystalline behavior of PCL in PCL/SiO2 hybrid system is strictly confined. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Barium titanate (BaTiO3) powders with particle sizes of 30 similar to 50 nm were prepared from barium stearate, titanium alkoxides and stearic acid by stearic acid-gel method. Dispersing the agglomerate of BaTiO3 nanoparticles into poly(amic acid) solution followed by curing led to the formation of polyimide hybrid films. The hybrid films were transparent and well distributed with BaTiO3 nanoparticles when the BaTiO3 content was less than 1 wt%. Highly loaded hybrid film containing 30 wit % BaTiO3 was tough, had a smooth surface and possessed much higher dielectric and piezoelectric constants than the parent polyimide.
Resumo:
Ternary europium complex with dibenzoylmethane (DBM) and 1,10-phenanthroline (phen) was in-situ synthesized in thin SiO2/polyvinyl butyral (PVB) hybrid films by a two-step sol-gel process and characterized by;means of fluorescence spectroscopy. The luminescence spectra, fluorescence lifetimes and photostability were all investigated. The results showed that the hybrid films exhibited the characteristic emission bands of the Central rare earth Eu3+. In addition, Eu3+ presented longer fluorescence lifetime than in an ethanol solution and the complex had a higher photostability in the hybrid film than in the PVB film containing the corresponding pure complex.
Resumo:
The inorganic/polymer hybrid films with good luminescent properties have been obtained by the sol - gel process via incorporating the polymer component doped with rare earth complexes. These films exhibit good toughness and transparency. Their fluorescence spectra and lifetimes indicate that they all have the characteristic luminescence of the central rare earth ions. The lifetimes of these films are longer than those of pure complexes. TEM have showed that the rare earth complexes are dispersed homogeneously in SiO2/PVB interpenetratiny networks, and the dispersed size is between 20 and 30 nn.
Resumo:
A new type of sol-gel organic-inorganic hybrid material was developed and used for the production of biosensors. This material is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. It prevents the cracking of conventional sol-gel-derived glasses and eliminates the swelling of the hydrogel. The optimum composition of the hybrid material was first examined, and then glucose oxidase was immobilized in this matrix to demonstrate its application. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The biosensor exhibited a series of good properties: high sensitivity (600 nA mmol(-1)L(-1)), short response time (11 s) and remarkable long-term stability in storage (at least 5 months). In addition, the characteristics of the second-generation biosensor with the use of tetrathiafulvalene as a mediator mere discussed.
Resumo:
Hybrid materials incorporating poly(ethylene glycol) (PEG) with tetraethoxysilane (TEOS) via a sol-gel process were studied for a wide range of compositions of PEG by DSC and high resolution solid-state C-13- and Si-29-NMR spectroscopy. The results indicate that the microstructure of the hybrid materials and the crystallization behavior of PEG in hybrids strongly depend on the relative content of PEG. With an increasing content of PEG, the microstructure of hybrid materials changes a lot, from intimate mixing to macrophase separation. It is found that the glass transition temperatures (T-g) (around 373 K) of PEG homogeneously embedded in a silica network are much higher than that (about 223 K) of pure PEG and also much higher in melting temperatures T-m (around 323 K) than PEG crystallites in heterogeneous hybrids. Meanwhile, the lower the PEG content, the more perfect the silica network, and the higher the T-g of PEG embedded in hybrids. An extended-chain structure of PEG was supposed to be responsible for the unusually high T-g of PEG. Homogeneous PEG-TEOS hybrids on a molecular level can be obtained provided that the PEG. content in the hybrids is less than 30% by weight. (C) 1998 John Wiley & Sons, Inc.
Resumo:
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 mu m large holes; the net can be silicified. The silica layers forming the lamellar zone are approximate to 5 mu m thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
A hybrid coupled ocean-atmosphere model is designed, which consists of a global AGCM and a simple anomaly ocean model in the tropical Pacific. Retroactive experimental predictions initiated in each season from 1979 to 1994 are performed. Analyses indicate that: (1) The overall predictive capability of this model for SSTA over the central-eastern tropical Pacific can reach one year, and the error is not larger than 0.8 degrees C. (2) The prediction skill depends greatly on the season when forecasts start. However, the phenomenon of SPB (spring prediction barrier) is not found in the model. (3) The ensemble forecast method can effectively improve prediction results. A new initialization scheme is discussed.
Resumo:
A fractional-step method of predictor-corrector difference-pseudospectrum with unconditional L(2)-stability and exponential convergence is presented. The stability and convergence of this method is strictly proved mathematically for a nonlinear convection-dominated flow. The error estimation is given and the superiority of this method is verified by numerical test.
Resumo:
Homoploid hybrid plant species are rare, and the mechanisms of their speciation are largely unknown, especially for homoploid hybrid tree species. Two contrasting hypotheses have been proposed to explain the origin of Hippophae goniocarpa: (1) it is a diploid hybrid originating from H. rhamnoides ssp. sinensis x H. neurocarpa ssp. neurocarpa, and (2) it originated via marginal differentiation from H. rhamnoides ssp. sinensis. Regardless of which of these hypotheses is true (if either), previous studies have suggested that H. rhamnoides ssp. sinensis is the only maternal donor for this hybrid species. In this study, we aim to elucidate the maternal composition of H. goniocarpa and to test the two hypotheses. For this purpose, we sequenced the maternal chloroplast DNA trnL-F region of 75 individuals representing H. goniocarpa, H. rhamnoides ssp. sinensis, and H. neurocarpa ssp. neurocarpa in two co-occurring sites of the taxa. Seven haplotypes were identified from three taxonomic units, and their phylogenetic relationships were further constructed by means of maximum parsimony, maximum likelihood, and network analyses. These seven haplotypes clustered into two distinct, highly divergent lineages. Two haplotypes from one lineage were found in H. rhamnoides ssp. sinensis, and five (representing the other lineage) in H. neurocarpa ssp. neurocarpa. Hippophae goniocarpa shared four common haplotypes from both lineages, but the haplotypes detected from the two populations differed to some extent, and in each case were identical to local haplotypes of the putative parental species. Thus, both H. rhamnoides ssp. sinensis and H. neurocarpa ssp. neurocarpa appear to have together contributed to the maternal establishment of H. goniocarpa. These results clearly demonstrate that the marginal origin hypothesis should be rejected, and support the hybrid origin hypothesis. Hippophae goniocarpa exhibits a sympatric distribution with its two parent species, without occupying new niches or displaying complete ecological isolation. However, this species has effectively developed reproductive isolation from its sympatric parent species. Our preliminary results suggest that H. goniocarpa may provide a useful model system for studying diploid hybrid speciation in trees. (c) 2008 The Linnean Society of London.
Resumo:
A novel hybrid organic-inorganic silica-based monolithic column possessing phenyl ligands for reversed-phase (RP) capillary electrochromatography (CEC) is described. The monolithic stationary phase was prepared by in situ co-condensation of tetraethoxysilane (TEOS) with phenyltriethoxysilane (PTES) via a two-step catalytic sol-gel procedure to introduce phenyl groups distributed throughout the silica matrix for chromatographic interaction. The hydrolysis and condensation reactions of precursors were chemically controlled through pH variation by adding hydrochloric acid and dodecylamine, respectively. The structural property of the monolithic column can be easily tailored through adjusting the composition of starting sol solution. The effect of PTES/TEOS ratios on the morphology of the created stationary phases was investigated. A variety of neutral and basic analytes were used to evaluate the column performance. The CEC columns exhibited typical RP chromatographic retention mechanism for neutral compounds and had improved peak shape for basic solutes.