341 resultados para Gold nanoparticle
Resumo:
Single crystal nanoplates with thickness less than 30 nm, characterized by hexagonal and truncated triangular shapes bounded mainly by {111} facets, were obtained in large quantities by aspartate reduction of gold chloride.
Resumo:
Gold nanoparticles (3.1-5.0 nm in size) surface-derivatized with both electroactive and nonelectroactive self-assembled monolayers were synthesized. The surface-derivatized electroactive particles can be easily oxidized/reduced at an electrode surface based on the diffusion-controlled current-voltage curve observed in cyclic voltammetry measurements. Spectroelectrochemical investigation demonstrated that the maximum absorbance of the nanoparticles in their oxidized state red-shifted compared with their reduced state to a different extent according to their size distribution. In the case of the particles surface-derivatized with nonelectroactive monolayers, much less shift was observed. This study showed that surface plasmon absorbance of gold nanoparticles was not only related to core charge states but was also influenced by surface charge states as well.
Resumo:
Coadsorption of ferrocene-terminated alkanethiols (FcCO(2)(CH2)(8)SH, Fc=(mu(5)-C5H5)Fe(mu(5)-C5H4)) with alkylthiophene thiols (2-mercapto-3-n-octylthiophene) yields stable, electroactive self-assembled monolayers on gold. The resulting mixed monolayer provides an energetically favorable hydrophobic surface for the adsorption of the surfactant aggregates in aqueous solution. The adsorptions have been characterized via their effect on the redox properties of ferrocenyl alkanethiols immobilized as minority components in the monolayers and on the interfacial capacitance of the electrode. Surfactant adsorption causes a decrease in the overall capacitance at the electrode and dramatically shifts the redox potential for ferrocene oxidation in a positive or negative direction depending on the identity of the surfactant employed. A structural model is proposed in which the alkane chains of the adsorbed surfactants interdigitate with those of the underlying self-assembled monolayer, leading to the formation of a hybrid bilayer membrane.
Resumo:
The preparative procedure of a kind of phospholipid/alkanethiol bilayers on a planar macroelectrode was copied to the as-prepared gold colloid electrodes. The electrochemical and spectral results show that the bilayers on colloid electrodes are interdigited, which are different from their 2-D counterparts on a planar macroelectrode.
Resumo:
The in-site functionalization of 4-aminothiophenol (4-ATP) self-assembled monolayer on gold electrode at physiological pH yields a redox active monolayer of 4'-mercapto-N-phenylquinone diimine (MNPD). The functionalized electrode exhibits excellent electrocatalytic responses towards dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by about 0.22 V and 0.34 V, respectively, with greatly enhanced current responses. Due to its different catalytic activities toward DA and AA, the modified electrode resolves the overlapping voltammetric responses of DA and AA into two well-defined voltammetric peaks by differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentration in the ranges of 5.0 x 10-6 - 1.25 x 10-4 M and 8.0 x 10-6 - 1.3 x 10-4 M with correlation coefficient of 0.999 and 0.998, respectively. The detective limits (3sigma) for DA and AA were found to be 1.2 x 10-6 M and 2.4 x 10-6 M, respectively.
Resumo:
Polyaniline (PANI) was cathodically synthesized at an evaporated gold electrode using an in situ electrogenerated intermediate as oxidant during reduction of the dissolved oxygen. The obtained PANI layer showed an electrochemical response similar to that synthesized by the conventionally anodic polymerization, and the average rate for the growth of PANI layer at polycrystalline gold electrode was 1.59 nm h(-1), while that at the Au (111) electrode was 4.93 nm h(-1). Based on these results, the thickness of the resulted layer can be easily controlled at molecular level for potential nanodevice applications. The obtained PANI layer showed morphology from an island-like nanostructure to an ultrathin film, depending on the crystal orientation of the electrode used.
Resumo:
A novel method for fabrication of horseradish peroxidase (HRP) biosensor has been developed by self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization of St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups. Finally, horseradish peroxi- dase was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The sensor was highly sensitive to hydrogen peroxide with a detection limit of 4.0 mumol l(-1), and the linear range was from 10.0 mumol l(-1) to 7.0 mmol l(-1). The biosensor retained more than 97.8% of its original activity after 60 days of use. Moreover, the Studied biosensor exhibited good current repeatability and good fabrication reproducibility.
Resumo:
In this paper we report the rational design and fabrication of high-quality core-shell Au-Pt nanoparticle film. Such film shows highly efficient catalytic properties and excellent surface-enhanced Raman scattering (SERS) ability.
Resumo:
A simple, green method was developed for the synthesis of gold and silver nanoparticles by using polysaccharides as reducing/stabilizing agents. The obtained positively charged chitosan-stabilized gold nanoparticles and negatively charged heparin-stabilized silver nanoparticles were characterized with UV-vis spectroscopy and transmission electron microscopy. The results illustrated the formation of gold and silver nanoparticles inside the nanoscopic polysaccharide templates. Moreover, the morphology and size distribution of prepared gold and silver nanoparticles varied with the concentration of both the polysaccharides and the precursor metal salts.
Resumo:
Gold nanoparticles were prepared by reducing gold salt with a polysaccharide, chitosan, in the absence/ presence of tripolyphosphate (TPP). Here, chitosan acted as a reducing/stabilizing agent. The obtained gold nanoparticles were characterized with UV-vis spectroscopy and transmission electron microscopy. The results indicated that the shape and size distribution of gold nanoparticles changed with the molecular weight and concentration of chitosan. More interestingly, the gelation of chitosan upon contacting with polyanion (TPP) can also affect the shape and size distribution of gold nanoparticles. By adding TPP to chitosan solution before the reduction of gold salt, gold nanoparticles have a bimodal size distribution, and at the same time, polygonal gold particles were obtained in addition to spherical gold nanoparticles.