322 resultados para ETHYLENE CARBONATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of self-immobilized ethylene polymerization catalysts, derived from neutral, single-component salicylaldiminato phenyl nickel complexes, is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsymmetrical allyl containing post-metallocene complex [ArN = C( Me)] [(ArN)-N-' = C(Me)]C5H3NFeCl2 [Ar = 2,6(i- Pr)(2)C6H3, Ar' = 4-allyl-2,6-(i-Pr)(2)C6H3] (3) has been prepared and characterized. Complex (3) can be co-polymerized with styrene in the presence of radical initiator to produce polymerized post-metallocene catalyst which exhibits high activity for ethylene polymerization (2.5 x 10(6) g PE/mol Fe.h).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/alpha -olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120 degreesC, a low temperature endotherm is observed at lower temperatures (40-80 degreesC), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm T-m(low) varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature T-c. The T-m(low) also depends on the thermal history before the crystallization at T-c, and an extrapolation of T-m(low) (30.6 degreesC) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30 degreesC. The T-m(low) is nearly equal to T-c, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational. entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we describe an improved thermal fractionation technique used to characterize the polydispersity of crystalline ethylene sequence length (CESL) of ethylene/alpha -olefin copolymers. After stepwise isothermal crystallization, the crystalline ethylene sequences are sorted into groups by their lengths. The CESLs are estimated using melting points of known hydrocarbons. The content of each group is determined using the calibrated peak area. The statistical terms: the arithmetic mean (L) over bar (n), the weighted mean (L) over bar (w) and the broadness index I = (L) over bar (w)/(L) over bar (n) are used to describe the distribution of CESL. Results show that improved thermal fractionation technique can quantitatively characterize the polydispersity of CESL with a high degree of accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of chemical shift effect of substituent was applied to the assignment of the C-13 NMR spectra of the ethylene/propylene and ethylene/octene-1 copolymers. Using the parameters derived above and the DEFT technique, we then entirely assigned the C-13 NMR spectra of the ethylene/propylene/octene(-1) terpolymers synthesized in the presence of the same heterogeneous supported Ziegler-Natta catalyst, TiCl4/MgCl2/i-Bu3Al. The present paper also covers the terpolymer composition and the monomer sequence distributions of a series of ethylene/propylene/octene-1 terpolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) block in two poly(ethylene terephthalate) (PET)-PEO segmented copolymers was studied with differential scanning calorimetry. The Avrami equation failed to describe the overall crystallization process, but a modified Avrami equation, the Q equation, did. The crystallizability of the PET block and the different lengths of the PEO block exerted strong influences on the crystallization process, the crystallinity, and time final morphology of the PEO block. The mechanism of nucleation and the growth dimension of the PEG block were different because of the crystallizability of time PET block and the compositional heterogeneity. The crystallization of the PEO block was physically constrained by the microstructure of time PET crystalline phase, which resulted in a lower crystallization rate. However, this influence became weak with the increase in the soft-block length. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron self-exchange rates (k(ex)) of viologen and its derivatives are estimated by using microelectrode voltammetry in poly(ethylene glycol) films. The dependences of supporting electrolyte concentration and sizes of viologen and its derivatives on k(ex) and diffusion coefficients (D) are discussed. Results show that k(ex) increases with the decrease of supporting electrolyte concentration and sizes of reactants. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of ethylene terephthalate-ethylene oxide segmented copolymers has been studied by means of differential scanning calorimetry (DSC). The kinetics of ET-EO segmented copolymer under nonisothermal crystallization conditions has been analyzed by the Ozawa equation. During the crystallization of the high-T-m segments (PET), the low-T-m segments (PEO) act as a noncrystalline diluent, the crystallization behavior of PET obeys the Ozawa theory. When the PEO segments begin to crystallize, the PET phase is always partially solidified and the presence of the spherulitic microstructure of PET profoundly influences the crystallization behavior, which results in that the overall crystallization process does not obey the Ozawa equation. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 similar to 1.2, probably reflecting one-dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metallocene complexes ((BuC5H4)-Bu-t)(2)MCl2 (M=Ti (1a), Zr (1b), Hf (1c)) and (tBu2C5H3)(2)MCl2 (M=Ti (2a), Zr (2b), Hf (2c)) were synthesized by the react ions of Li (BuC5H4)-Bu-t and (LiBu2C5H3)-Bu-t with metal tetrachloride in THF solution. The complexes were characterized by their IR, H-1-NMR and EI-MS. The molecular structure of Ic was determined by X-ray single-crystal structure analysis. The complexes (1a similar to 2c) exhibited high activities for ethylene polymerizatin (up to 3.2x10(6) gPE/mol.h) in the presence of methylaluminoxane (MAO) at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile properties of poly (P-hydroxybutyrate)/poly (ethylene oxide) (PHB/PEO) blends were reported in this paper. It was found that the blends of PHB with different molecular-weight PEO exhibited different mechanical properties. The mechanical properties of the blends of PHB and PEO3 (M-w=0.3x10(6)) were very poor. However, the blends of PHB and PEO5 (M-w=5x10(6)) showed compatible in mechanical properties. Excellent synergism was observed not only in tensile stress and tensile elongation but also in modulus. Moreover, the ductility of the blends could be improved further under proper heat-treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tridentate ligand[(2,6-ArN=C(Me))(2)C5H3N](Ar=4-allyl-2,6-(i-Pr)(2)C6H3)(4)which contains allyl groups on each aryl ring was ready prepared and reacted with FeCl2. 4H(2)O to give the precatalyst [(2,6-ArN=C(CH3))(2)C5H3N]. FeCl2 (5). Compounds 2-5 were characterized by H-1 NMR, EI-MS,and IR. The complex 5 which was actived by methylaluminoxane(MAO) exhibits high activity for ethylene polymerization [1.9 x 10(6) g pE.(mol Fe . h)(-1) at 0 degreesC]. It was showed that the activity was decreased with increasing temperature and the polymer product was highly linear PE with (M) over bar (eta) varying from 50000 to 260000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of polyethylene oxide (PEO) in poly(ethylene terephthalate)poly(ethylene oxide) (PETPEO) segmented copolymer and PEO homopolymer has been studied by means of differential scanning calorimetry, as well as transmission electron microscope. The kinetics of PEO in copolymer and PEO homopolymer under nonisothermal crystallization condition has been analyzed by Ozawa equation. The results show that Ozawa equation only describes the crystallization behavior of PEO-6000 homopolymer successfully, but fails to describe the whole crystallization process of PEO in copolymer because the secondary crystallization in the later stage could not be neglected. Due to the constraint of PET segments imposed on the PEO segments, a distinct two stage of crystallization of PEO in copolymer has been investigated by using Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. In the case of PEO-6000 homopolymer, good linear relation for the whole crystallization process is obtained owing to the secondary crystallization does not occur under our experimental condition. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of Ethylene Terephthalate-Ethylene Oxide (ET-EO) segmented copolymers has been studied with the use of differential scanning calorimetry (DSC). The kinetics of PEO in ET-EO segmented copolymer under nonisothermal crystallization conditions has been analyzed with the Ozawa equation. The results show that there is no agreement with Ozawa's theoretical predictions in the whole crystallization process owing to the constraint of ET segments imposed on the EO segments. A distinct two-crystallization process has been investigated by using the Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. The value of the Avrami exponent n is independent of the length of soft segments. However, the crystallization rate is sensitive to the length of soft segments. The longer the soft segments, the faster the crystallization will be.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.