218 resultados para Copper alloys.
Resumo:
We report the fabrication of organic thin-film transistors (OTFTs) with copper phthalocyanine (CuPc) as the semiconductor and calcium fluoride (CaF2) as the gate dielectric on the glass substrate. The fabricated transistors show a gate voltage dependent carrier field effect mobility that ranges from 0.001 to 0.5 cm(2) V-1 s(-1). In the devices, the CaF2 dielectric is formed by thermal evaporation; thus OTFTs with a top-gate structure can be fabricated. This provides a convenient way to produce high-performance OTFTs on a large scale and should be useful for the integration of organic displays.
Resumo:
This paper presents results concerning structure and electrochemical characteristics of the La0.67Mg0.33 (Ni0.8Co0.1Mn0.1) (x) (x=2.5-5.0) alloy. It can be found from the result of the Rietveld analyses that the structures of the alloys change obviously with increasing x from 2.5 to 5.0. The main phase of the alloys with x=2.5-3.5 is LaMg2Ni9 phase with a PuNi3-type rhombohedral structure, but the main phase of the alloys with x=4.0-5.0 is LaNi(5)phase with a CaCu5-type hexagonal structure. Furthermore, the phase ratio, lattice parameter and cell volume of the LaMg2Ni9 phase and the LaNi5 phase change with increasing x. The electrochemical studies show that the maximum discharge capacity increases from 214.7 mAh/g (x=2.5) to 391.1 mAh/g (x=3.5) and then decreases to 238.5 mAh/g (x=5.0). As the discharge current density is 1,200 mA/g, the high rate dischargeability (HRD) increases from 51.1% (x=2.5) to 83.7% (x=3.5) and then decreases to 71.6% (x=5.0). Moreover, the exchange current density (I-0) of the alloy electrodes first increases and then decrease with increasing x from 2.5 to 5.0, which is consistent with the variation of the HRD. The cell volume reduces with increasing x in the alloys, which is detrimental to hydrogen diffusion and accordingly decreases the low-temperature dischargeability of the alloy electrodes.
Resumo:
In the title structure, [Cu(C12H8N2)(H2O)(4)](C10H6S2O6)center dot-2H(2)O, the cation lies on a crystallographic twofold rotation axis and the anion lies on a centre of inversion. The Cu-II atom is coordinated by two N atoms of a 1,10-phenanthroline ligand and four O atoms from four water ligands in a distorted octahedral geometry. The unique Cu-O distances are 2.054 (2) and 2.088 (2) angstrom and the Cu-N distance is 2.073 (2) angstrom. In the crystal structure, a three-dimensional supramolecular framework is constructed by extensive intermolecular O-H center dot center dot center dot O hydrogen bonds.
Resumo:
The structures and the electrochemical characteristics of La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy, Ti0.25-xZrxV0.35Cr0.1Ni0.3 (x = 0.05-0.15) alloy and AB(3
Resumo:
Mg-20Gd(%, mass fraction) samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated alpha-Mg solid solution phase and the as-east ingot mainly contains alpha-Mg solid solution and Mg5Gd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2%. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.
Resumo:
The oxamido-bridged heterobinuclear copper(II)-nickel(II) complex, [Cu(oxbe)Ni(phen)(2)]ClO4.3H(2)O (1) and homotrinuclear nickel(11) complex {[Ni(oxbe)](2)Ni(H2O)(2)}.2.5DMF (2) have been synthesized and characterized by means of elemental analysis, IR, EPR. and electronic spectra and magnetic susceptibility, where H(3)oxbe is dissymmetrical ligand N-benzoato-N'-(2-aminoethyl)ox-amido, phen = 1.10-phenanthroline, DMF = dimethylformamide. Complex I has an extended oxamido-bridged structure consisting of planar copper(II) and octahedral nickel(II) ions. The chi(M) and mu(eff) versus T plots of 1 is typical of an antiferromagnetically coupled Cu(II)-Ni(II,) pair with a spin-doublet ground state, and magnetic analysis leads to J = -57.1 cm(-1). The molecular structure of 2 is centrosymmetrical, with one octahedral nickel atom lying at an inversion center and two terminal Ni(II) atoms in approximately square planar environment. Through the hydrogen bonds and pi- pi stacking interactions, a 2D supramolecular structure is formed.
Resumo:
W1-xAlx (x=0-0.86) alloys were synthesized by mechanically alloying the pure metal powder mixtures at designated compositions by conventional high-energy ball milling. The W-Al alloys were stable under high pressure and high temperature. The alloys were lighter than W. The hardness and oxidation resistance of the alloys was greatly improved compared to both W and Al. (C) 2002 Elsevier Science B.V. All rights reserved.