245 resultados para Coal combustion
Resumo:
Multi-walled carbon nanotubes (MWCNTs) were efficiently synthesized by catalytic combustion of polypropylene (PP) using nickel compounds (such as Ni2O3, NiO, Ni(OH)(2) and NiCO3 (.) 2Ni(OH)(2)) as catalysts in the presence of organic-modified montmorillonite (OMMT) at 630-830 degrees C. Morphologies of the sample undergoing different combustion times were observed to investigate actual process producing MWCNTs by this method. The obtained MWCNTs were characterized by X-ray diffraction (XRD), transmission electron microscope and Raman spectroscopy. The yield of MWCNTs was affected by the composition of PP mixtures with OMMT and nickel compounds and the combustion temperature. The proton acidic sites from the degraded OMMT layers due to the Hoffman reaction of the modifiers at high temperature played an important role in the catalytic degradation of PP to supply carbon sources that are easy to be catalyzed by nickel catalyst for the growth of MWCNTs. The XRD measurements demonstrated that the nickel compounds were in situ reduced into the Ni(0) state with the aid of hydrogen gas and/or hydrocarbons in the degradation products of PP, and the Ni(O) was really the active site for the growth of MWCNTs. The combination of nickel compounds with OMMT was a key factor to efficiently synthesize MWCNTs via catalytic combustion of PP.
Resumo:
MnZn-ferrite/SiO2 nanocomposites with different silica content were successfully fabricated by a novel modified sol-gel auto-combustion method using citric acid as a chelating agent and tetraethyl orthosilicate (TEOS) as the source of silica matrix. The auto-combustion nature of the dried gel was studied by X-ray diffraction (XRD), Infrared spectra (IR), thermogravimetry (TG) and differential thermal analysis (DTA). Transmission electron microscope (TEM) observation shows that the MnZn-ferrite particles are homogeneously dispersed in silica matrix after auto-combustion of the dried gels. The magnetic properties vary with the silica content. The transition from the ferromagnetic to paramagnetic state is observed by Mossbauer spectra measurement with the increasing silica content. Vibrating sample magnetometer (VSM) shows that the magnetic properties of Mn0.65Zn0.35Fe2O4/SiO2 nanocomposites strongly depend on the silica content.
Resumo:
Nanocrystals of SrAl2O4:Eu2+ have been prepared by combustion synthesis. The results of XRD indicated that the resulting SrAl2O4:Eu2+ nanocrystals have a reduced and distorted monoclinic lattice compared with bulk materials. Both the excitation and emission spectra of SrAl2O4:Eu2+ nanocrystals shifts to higher energies in contrast to the bulk materials. The band structure calculation is performed using first-principles full potential-linearized augmented plane wave method within density functional theory. The calculated results are in reasonable agreement with our experimental results.
Resumo:
Fe-Ni-O samples, with Fe/Ni ratio ranging from 2 to 1/3, were synthesized. Samples synthesized with and without citric acid in the precursor were compared and it was found that the addition of citric acid is the necessary condition for FeNi3 formation; it was found that FeNi3 alloys were formed in these samples even when calcined in an air atmosphere. X-ray diffraction and X-ray photoelectron spectroscopy measurements were used to characterize the samples. Because of the existence of FeNi3 alloys, Fe-Ni-O samples showed strong reactivity to NO and NO + O-2 but were inert to O-2 alone.
Resumo:
The synthesis of nanocrystalline W-type hexaferrites Ba(CoxZn1-x)(2)Fe16O27 powders by sol-gel auto-combustion method has been investigated. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). The results reveal that the dried gel exhibits auto-combustion behavior. After combustion, pure nanocrystalline W-type hexaferrite phase starts to appear at the calcination temperature of 800 degrees C. The crystallinity and the grain size increase at higher temperature. The saturation magnetization and coercivity clearly depend on calcination temperature and Co content X.
Resumo:
A nitrate-citrate combustion route to synthesize nanocrystalline samarium-doped ceria powders for solid electrolyte ceramics is presented. This route is based on the gelling of nitrate solutions by the addition of citric acid and ammonium hydroxide, followed by an intense combustion process due to an exothermic redox reaction between nitrate and citrate ions. The influence of ignition temperature on the characteristics of the powders was studied. The change of the crystal structure with the content of doped Sm was investigated. High temperature X-ray, and Raman scattering were used to characterize the sample. The lattice constant and unit volume increase with doping level and increasing temperature. Dense ceramic samples prepared by uniaxial pressing and sintering in air were also studied.