257 resultados para CONICAL INTERFACE
Resumo:
A new kind of amphiphilic polyether dendrimer bearing eight alkyl chains at the periphery were synthesized step by step using the convergent method. Their structures were confirmed by FT-IR spectra, H-1 NMR spectra and mass spectra etc. The pi-A isotherms, hysteresis and molecular area-time curves at air water interface were reported. These results showed that they could form stable monolayers at water surface.
Resumo:
The collapse behaviour of phthalocyanine monolayers at the air-water interface was studied by means of compression-expansion isotherms. Measurements of two cycles of compression-expansion isotherms of copper tetrakis (4'-benzyloxy-4-phenylsulfonylphenoxy) phthalocyanine showed that the difference in the area per molecule at target pressure between the first cycle and the second cycle was dependent on the target pressure. This difference was used to identify the collapse of monolayers at the air-water interface. The transfer behaviour of monolayers at the air-water interface onto a substrate at different target pressures was also studied.
Resumo:
A novel idea relating to the selective barrier layer of a composite membrane is described. The effective interface of the composite membrane could act as a barrier layer which could be controlled to an ideally ultrathin thickness. A new type of polyamide composite membrane was prepared according to this idea, which possessed permeability and chemical resistance more than one magnitude greater than those of ordinary polyamide composite membranes. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
We have developed a new theoretical model based on the MPB4 theory to calculate the differential capacitance of the interface of 0.05mol/L MgSO4 in water and 0.1mol/L TBATPB in nitrobenzene. Our results coincide with the experimental values very well. It indicates that our model may describe well the structure of ITIES not only in the presence of 1:1 electrolyte but also in the presence of 2:2 electrolyte.
Resumo:
In this paper we study the ion transfer across the liquid/liquid interface by impedance spectrum technique in the four - electrode system. We present a method of getting the real interfacial impedance curve from the apparent impedance curve obtained in the four - electrode system. A practical kinetics investigation on the transfer of tetramethylammonium ion at the water/nitrobenzene interface was done with the method to verify the validity of the method. The transfer of tetramethylammonium ion at the W/O interface is really a reversible transfer.
Resumo:
Applying impedance spectrum technique to liquid/liquid interfacial electrochemistry, we present the theoretical expression of the liquid/liquid interfacial impedance in the four - electrode electrolytic cell measured by alternating current impedance method. The influence of the electrolytic cell parameters and input passage parameters of the impedance apparatus on impedance spectrum curves are theoretically studied.
Resumo:
The hydrosol of SnO2 nanoparticles are prepared by the method of colloid chemistry. The free piling up process of nanosized SnO2 colloid particles are investigated at the gas-liquid interface by LB and Brewster Angle Microscopy techniques. The result indicates that solid state monolayer and multilayer of SnO2 nanoparticles can be formed at the gas-liquid interface only by aging the sol in air or compressing it without amphiphiles surfactant.
Resumo:
The MPB4 theory is used to calculate the differential capacitance of the interface between LiCl in water and TBATPB in 1,2-dichloroethane at electrolyte concentrations of 0.005, 0.01 and 0.02 M. The effects of the ion size and the image force, and the influence of the electrolyte concentration, the surface charge density and the solvent effect on the inner layer potential drop are considered simultaneously. These effects can be ascribed to the ionic penetration into the opposite solution and ion-ion correlations across the interface. Our results are in better agreement with experimental data than those obtained using Gouy-Chapman theory. This indicates that the MPB4 theory may also describe the structure of the water \1,2-dichloroethane interface provided that the influence of the electrolyte concentration, the surface charge density and the solvent effect on the inner layer potential distribution are included in the calculation. Comparison of the theoretical results with those of the water \nitrobenzene interface shows that the structure of the water \1,2-dichloroethane interface is similar to that of the water \nitrobenzene interface, except that in the former case the inner-layer potential drop is much higher and the effects of the image force and the ion size are more pronounced.
Resumo:
The electrochemical transfer behaviour of vanadium-containing heteropolytungstate anions [PW12-xVxO40]((3+r)-) (x = 1-4) across the water \nitrobenzene interface has been investigated by cyclic voltammetry and chronopotentiometry with cyclic linear current scanning. The transfer of PW11V1O404-, HPW10V2O404-, H2PW10V2O403-, H3PW9V3O403- and H4PW8V4O(40)(3-) across the water \nitrobenzene interface can be observed within the potential window. The effects were observed of pH in the water phase on the transfer behaviour and the formation of vanadium-containing heteropolytungstate anions in solution. Heteropolytungstate anions become more stable due to their involving the vanadium atom. The degree of protonation and the dissociation constant of the trivalent vanadium-containing heteropolytungstate anion of protonation increase with increasing vanadium content. The transfer processes are diffusion-controlled The standard transfer potential, the standard Gibbs energy and the dissociation constant for vanadium-containing heteropolytungstate anions have been obtained and the transfer mechanisms are discussed.
Resumo:
The transfer of bis-1:11 molybdosilicate heteropolyanion with dysprosium across the water/nitrobenzene interface has been investigated by chronopotentiometry with linear current scanning and cyclic voltammetry. The strandard transfer potential and Gibbs energy estimated from cyclic voltammetry were 0.102V and -39.5kJ.mol(-1), respectively. The kinetic parameters of the transfer were determinated by chronopotentiometry with the linear current scanning.
Resumo:
Pyrazolone derivatives, such as antipyrine, aminopyrine, and 4-aminoantipyrine, can transfer across the water/nitrobenzene interface to produce a pair of well-defined symmetric, reversible anodic-cathodic peaks by cyclic voltammetri. The transfer mechanis
Resumo:
The effect of crystallization rate on the epitaxial interface layer thickness of high-density polyethylene (HDPE) in the epitaxial system with oriented isotactic polypropylene (iPP) has been investigated by electron microscopy. The results of bright-field
ELECTROCHEMICAL STUDY OF ISOPOLYMOLYBDATE(VI) ANION TRANSFER ACROSS THE WATER/NITROBENZENE INTERFACE
Resumo:
Isopolymolybdate (VI) anion transfer across the water/nitrobenzene (w/n) interface was studied by cyclic voltammetry. The effect of pH and responsed kinetics of isopolymolybdate anion's formation in the water phase on the transfer behavior have been studi
Resumo:
The interface thickness in two triblock copolymers were determined using small-angle x-ray scattering in the context of the theory proposed by Ruland. The thickness was found to be nonexistent for the samples at three different temperatures. By viewing th