255 resultados para Applied microbiology
Resumo:
In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F-2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with "broad and thin blade" characteristics and another with "long and narrow blade" characteristics, were applied in the hybridization to yield the F-2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for "FL," explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait "FW," accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.
Resumo:
The bay scallop, Argopecten irradians irradians, introduced from North America, has become one of the most important aquaculture species in China. Inan effort to identify scallop genes involved in host defense, a high-quality cDNA library was constructed from whole body tissues of the bay scallop. A total of 5828 successful sequencing reactions yielded 4995 expressed sequence tags (ESTs) longer than 100 bp. Cluster and assembly analyses of the ESTs identified 637 contigs (consisting of 2853 sequences) and 2142 singletons, totaling 2779 unique sequences. Basic Local Alignment Search Tool (BLAST) analysis showed that the majority (73%) of the unique sequences had no significant homology (E-value >= 0.005) to sequences in GenBank. Among the 748 sequences with significant GenBank matches, 160 (21.4%) were for genes related to metabolism, 131 (17.5%) for cell/organism defense, 124 (16.6%) for gene/protein expression, 83 (11.1%) for cell structure/motility, 70 (9.4%) for cell signaling/communication, 17 (2.3%) for cell division, and 163 (21.8%) matched to genes of unknown functions. The list of host-defense genes included many genes with known and important roles in innate defense such as lectins, defensins, proteases, protease inhibitors, heat shock proteins, antioxidants, and Toll-like receptors. The study provides a significant number of ESTs for gene discovery and candidate genes for studying host defense in scallops and other molluscs.
Resumo:
Two extracellular chitosanases (ChiX and ChiN) were extracted from Microbacterium sp. OU01 with Mr values of 81 kDa (ChiX) and 30 kDa (ChiN). ChiN was optimally active at pH 6.2 and 50 degrees C and ChiX at pH 6.6 and 60 degrees C (assayed over 15 min). Both the activities increased with the degree of deacetylation (DDA) of chitosan. ChiN hydrolyzed oligomers of glucosamine (GlcN) larger than chitopentaose, and chitosan with 62-100% DDA; but ChiX acted on chitosan and released GlcN. Hydrolysis of chitosan with 99% DDA by ChiN released chitobiose, chitotriose and chitotetraose as the major products.
Resumo:
A Chlamydomonas reinhardtii (C. reinhardtii) chloroplast expression vector, papc-B, containing the apc-B gene that encodes the beta subunit of the light-harvesting antenna protein allophycocyanin (APC) of cyanobacteria, was constructed and transferred to the chloroplast genome of C. reinhardtii by the biolistic method. The transformants were identified by Southern blot, Western blot and ELISA assays after selection on resistant medium. The recombinant APC beta subunit was expressed in the C. reinhardtii chloroplast and accounted for up to 2-3% (w/w) of the total soluble protein (TSP), suggesting a promising prospect of using C. reinhardtii chloroplasts to produce functional plant-derived proteins.
Resumo:
The region of Qingdao, China, experienced the world's largest green tide from May to July 2008. More than one million tons of fresh algal biomass of the green alga Ulva prolifera was harvested, while more was suspected to have sunk to the bottom. The original source of this seaweed was suspected to be from the south as revealed by satellite images. The floating biomass drifted with the water current northward and flourished in nearshore waters around Qingdao. However, direct biological evidence for "seed" source is lacking. It is still unclear whether this alga could survive the Qingdao local coastal environment and pose future danger of potential blooming. Systematic and seasonal sampling of waters in the intertidal zone at six collection sites along the Qingdao coast was conducted from December 2008 to April 2009. Forty-eight water samples were analyzed. From these, nine different morphotypes of Ulva were grown in the laboratory under standard temperature and light regimes. Growth of Ulva was observed in all water samples. However, molecular phylogenetic analyses revealed that the dominant U. prolifera strain of the 2008 bloom was absent in all the water-derived cultures during the sampling period. These results provide evidence that the dominant bloom-forming alga was unlikely able to survive the coastal waters (the minimal surface water temperature in February is 2A degrees C) in winter conditions in Qingdao, even though all the sampling locations were heavily covered by this alga in June 2008.
Resumo:
A transient transformation system for the unicellular marine green alga, Platymonas subcordiformis, was established in this study. We introduced the pEGFP-N1 vector into P. subcordiformis with a glass bead method. P. subcordiformis was incubated in cell wall lytic enzymes (abalone acetone powder and cellulase solutions) to degrade the cell wall. The applicable conditions for production of viable protoplasts were pH 6.5, 25 degrees C, and 3 h of enzyme treatment. The protoplast yield was 61.2% when P. subcordiformis cells were added to the enzyme solution at a concentration of 10(7) cell ml(-1). The protoplasts were immediately transformed with the pEGFP-N1 vector using glass-bead method. The transformation frequency was about 10(-5), and there was no GFP activity observed in either the negative or the blank controls. This study indicated that GFP was a sensitively transgenic reporter for P. subcordiformis, and the method of cell wall enzymolysis followed by glass bead agitation was applicable for the transformation of P. subcordiformis.
Resumo:
Thermal analysis and thermolysis kinetics of three kinds of seaweeds and fir wood (M. glyptostriboides Huet Cheng), a kind of typical land plant, had been conducted. The results showed that thermal stability follows the order of Grateloupia filicina < Ulva lactuca < Dictyopteris divaricata < fir wood. A notable difference on heat flow between seaweeds and fir wood during thermolysis was that the former were mainly connected with exothermic processes at relatively lower temperature regimes. while the latter was connected with an apparent endotherm at a relatively higher temperature regime followed by a maximum exothermic peak. This suggested that the heat coupling might be realized if co-thermolysis of seaweeds and fir wood were carried out. The main devolatilization phase of each seaweed could be described by Avrami-Erofeev equation, which indicated that thermolysis of seaweeds follows the mechanism of random nucleation and nuclei growth, whereas that of fir wood by Z-L-T equation and its thermolysis mechanism was three-dimensional diffusion. The activation energies calculated for both seaweeds and fir wood increase as conversion increases. However, those for the former have wider distribution. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We used microarray technology to study differentially expressed genes in white spot syndrome virus (WSSV)-infected shrimp. A total of 3136 cDNA targets, including 1578 unique genes from a cephalothorax cDNA library and 1536 cDNA clones from reverse and forward suppression subtractive hybridization (SSH) libraries of Fenneropenaeus chinensis, plus 14 negative and 8 blank control clones, were spotted onto a 18 x 18 mm area of NH2-modified glass slides. Gene expression patterns in the cephalothorax of shrimp at 6 h after WSSV injection and moribund shrimp naturally infected by WSSV were analyzed. A total of 105 elements on the arrays showed a similar regulation pattern in artificially infected shrimp and naturally infected moribund shrimp; parts of the results were confirmed by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The up-regulated expression of immune-related genes, including heat shock proteins (HSP70 and HSP90), trehalose-phosphate synthase (TPS), ubiquitin C, and so forth, were observed when shrimp were challenged with WSSV. Genes including myosin LC2, ATP synthase A chain, and arginine kinase were found to be down-regulated after WSSV infection. The expression of housekeeping genes such as actin, elongation factor, and tubulin is not stable, and so these genes are not suitable as internal standards for semiquantitative RT-PCR when shrimp are challenged by WSSV. As a substitute, we found that triosephosphate isomerase (TPI) was an ideal candidate of interstandards in this situation.
Resumo:
Eleven pairs of Undaria pinnatifida (Harv.) Suringar gametophytes were identified with random amplified polymorphic DNA (RAPD) technique. After screening 100 primers, 20 ten-base primers were determined for the RAPD analysis. A total of 312 polymorphic loci were obtained, of which 97.7% were polymorphic. The primer S198 was found to distinguish all the selected Undaria pinnatifida gametophytes. The genetic distances between each two of the twenty-two U. pinnatifida gametophytes ranged from 0.080 to 0.428, while the distances to the Laminaria was 0.497 on average. After reexamination, two sequences characterized amplification region (SCAR) markers were successfully converted, which could be applied to U. pinnatifida germplasm identification. All these results demonstrated the feasibility of applying RAPD markers to germplasm characterization and identification of U. pinnatifida gametophytes, and to provide a molecular basis for Undaria breeding.
Resumo:
In this study, using a bioassay-guided isolation and purification procedure, we obtained 3-chloro-2,5-dihydroxybenzyl alcohol from a marine-derived Ampelomyces species that effectively inhibited larval settlement of the tubeworm Hydroides elegans and of cyprids of the barnacle Balanus amphitrite. The inhibitive effect on larval settlement was nontoxic and the EC50 of 3-chloro-2,5-dihydroxybenzyl alcohol ranged from 3.19 mu g ml(-1) to 3.81 mu g ml(-1) while the LC50 was 266.68 lambda g ml(-1) for B. amphitrite cyprids; EC50 ranged from 0.67 mu g ml(-1) to 0.78 mu g ml(-1), and LC50 was 2.64 mu g ml(-1) for competent larvae of H. elegans, indicating that inhibitive effect of this compound was nontoxic. At a concentration of 50 mu g per disc, this compound showed strong inhibitive effects on the growth of 13 out of 15 marine bacterial species tested in disc diffusion bioassay. Overall, the high inhibitory activities against bacteria and larval settlement as well as the non- or low-toxic nature of this compound to the barnacle and polychaete larvae suggest this compound could be a potent antifoulant and/or antibiotic.
Resumo:
Specification and differentiation of skeletal muscle cells are driven by the activity of genes encoding members of the myogenic regulatory factors (MRFs). In vertebrates, the MRF family includes MyoD, Myf5, myogenin, and MRF4. The MRFs are capable of converting a variety of nonmuscle cells into myoblasts and myotubes. To better understand their roles in fish muscle development, we isolated the MyoD gene from flounder (Paralichthys olivaceus) and analyzed its structure and patterns of expression. Sequence analysis showed that flounder MyoD shared a structure similar to that of vertebrate MRFs with three exons and two introns, and its protein contained a highly conserved basic helix-loop-helix domain (bHLH). Comparison of sequences revealed that flounder MyoD was highly conserved with other fish MyoD genes. Sequence alignment and phylogenetic analysis indicated that flounder MyoD, seabream (Sparus aurata) MyoD1, takifugu (Takifugu rubripes) MyoD, and tilapia (Oreochromis aureus) MyoD were more likely to be homologous genes. Flounder MyoD expression was first detected as two rows of presomitic cells in the segmental plate. From somitogenesis, MyoD transcripts were present in the adaxial cells that give rise to slow muscles and the lateral somitic cells that give rise to fast muscles. After 30 somites formed, MyoD expression decreased in the somites except the caudal somites, coincident with somite maturation. In the hatching stage, MyoD was expressed in other muscle cells and caudal somites. It was detected only in muscle in the growing fish.
Resumo:
Ferritin, the iron storage protein, plays a key role in iron metabolism. A cDNA encoding ferritin (FcFer) was cloned from hepatopancreas of Chinese shrimp, Fenneropenaeus chinensis. The predicted protein contains 170 amino acid residues with a predicted molecular weight (MW) about 19, 422.89 Da and theoretical isoelectric point (PI) of 4.73. Amino acid alignment of FcFer revealed 97% homology with Litopenaeus vannamei ferritin. Results of the RT-PCR showed that the expression of FcFer mRNA was up-regulated after shrimp was challenged with either white spot syndrome virus (WSSV) or heavy metal ions (Zn2+ and Cu2+) in the laboratory. A fusion protein containing FcFer was produced and the purified recombinant protein exhibited similar function of iron uptake in vitro. The result of in-gel digestion and identification using LC-ESI-MS showed that two peptide fragments (-DDVALPGFAK- and -LLEDEYLEEQVDS1KK-) of the recombinant protein were identical to the corresponding sequence of L. vannamei ferritin. The recombinant FcFer protein will be proved useful for study on the structure and function of ferritin in F chinensis. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Process conditions for cell cultures derived from conchocelis of female red macroalga Porphyra haitanensis were optimized in an illuminated 0.3-l bubble-column photobioreactor, using CO2 in air as the sole carbon source during a 20-day cultivation period. It reached the highest growth rate when the initial cell density was 700 mg l(-1)(dry weight), the optional aeration rate was 1.2 v/v/min, inorganic nitrate concentration was 15 mM and inorganic phosphate concentration was 0.6 mM. This is the first reported bioreactor cultivation study of cell cultures derived from conchocelis of Porphyra haitanensis.
Resumo:
Cytological changes and subsequent mitotic processes were studied in gynogenetically activated eggs of olive flounder subjected to cold-shock treatment using indirect immunofluorescence staining of isolated blastodisks. Obvious differences between controls and treated eggs were detected during early cell division. The developmental process of haploid control was similar to that of the diploid control except several minutes delayed. Spindles disassembled by the cold-shock treatment regenerated soon after treatment, resulting in the occurrence of the first mitosis. The immature daughter centriole was easily depolymerized by cold-shock treatment, leading to the formation of the bipolar spindle in the first cell cycle and the formation of the monopolar spindle in the second cell cycle, resulting in chromosome set doubling. Some two-cell stage eggs had a monopolar spindle in one blastomere and a bipolar spindle in another during the second mitosis. These eggs had a high potency developing into haploid-diploid mosaics. To the best of our knowledge, this study is the first to clarify the mechanism of chromosome set doubling in marine fishes and provides a preliminary cytological basis for developing a reliable and efficient protocol for mitotic gynogenesis induction by cold-shock treatment in olive flounder.
Resumo:
A carotenoid gene (crtR-B) from the green alga Haematococcus pluvialis, encoding beta-carotene hydroxylase that was able to catalyze the conversion of beta-carotene to zeaxanthin and canthaxanthin to astaxanthin, was cloned into Chlamydomonas reinhardtii chloroplast expression vector p64D to yield plasmid p64DcrtR-B. The vector p64DcrtR-B was transferred to the chloroplast genome of C. reinhardtii using micro-particle bombardment. PCR and Southern blot analyses indicated that crtR-B was integrated into the chloroplast genome of the transformants. RTPCR assays showed that the H. pluvialis crt R-B gene was expressed in C. reinhardtii transformants. The transformants rapidly synthesized carotenoids in larger quantities than the wild-type upon being transferred from moderate to high-intensity white light. This research provides a foundation for further study to elucidate the possible mechanism of photo-protection by xanthophylls and other carotenoids in high light conditions or through exposure to UV radiation.