216 resultados para wavelength tuning
Resumo:
Three new carbazole copolymers, poly(9-(2,5-diarene-[1,3,4]oxadiazole)-carbazole-alt-9-(2-ethylhexyl)-carbazole-3,6-diyl)s (P1), poly(9-(2,5-diarene-[1,3,4]oxadiazole)-2, 7-carbazole-alt-9-(2-ethylhexyl)-3, 6-carbazole-diyl)s (P2), and poly(9-(2,5-diarene-[1,3,4]oxadiazole)-carbazole-alt-9-(2-ethylhexyl)-carbazole-2,7-diyl)s (P3), were synthesized by the Suzuki coupling reaction
Resumo:
A new and synthetically versatile strategy has been developed for the phosphorescence color tuning of cyclometalated iridium phosphors by simple tailoring of the phenyl ring of ppy (Hppy=2-phenylpyridine) with various main-group moieties in [Ir(ppy-X)(2)(acac)] (X=B(Mes)(2), SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph). This can be achieved by shifting the charge-transfer character from the pyridyl groups in some traditional iridium ppy-type complexes to the electron-withdrawing main-group moieties and these assignments were supported by theoretical calculations.
Resumo:
A series of donor-acceptor low-bandgap conjugated polymers, i.e., PTnBT (n = 2-6), composed of alternating oligothiophene (OTh) and 2,1,3-benzothiadiazole (BT) units were synthesized by Stille cross-coupling polymerization. The number of thiophene rings in OTh units, that is n, was tuned from 2 to 6. All these polymers display two absorption bands in both solutions and films with absorption maxima depending on n. From solution to film, absorption spectra of the polymers exhibit a noticeable red shift. Both high- and low-energy absorption bands or P'F5BT and PT6BT films locate in the visible region, which are at 468 and 662 nm for PT5BT and 494 and 657 nm for PT6BT.
Resumo:
We demonstrate an approach for realizing colour-controllable light emission from top-emitting organic light-emitting diodes (TEOLEDs) by utilizing exterior multilayer films overlaid on them. The emissive colour varies from blue to red for the TEOLED with green tris(8-quinolinolato) aluminium as the emissive layer by tuning the exterior multilayer films. The theoretical simulation of the electroluminescence for the colour tunable TEOLEDs is demonstrated and accords well with experimental results. The advantage of this approach is that the optical and electrical characteristics of the TEOLED can be controlled individually and hence provides the feasibility to realize a full-colour display by using white TEOLEDs.
Resumo:
The synthesis, isomeric studies, and photophysical characterization of a series of multifunctional cyclometalated iridium(III) complexes containing a fluoro- or methyl-substituted 2[3-(N-plienylcarbazolyl)]pyridine molecular framework are presented. All of the complexes are thermally stable solids and highly efficient electrophosphors. The optical, electrochemical, photo-, and electrophosphorescence traits of these iridium phosphors have been studied in terms of the electronic nature and coordinating site of the aryl or pyridyl ring substituents. The correlation between the functional properties of these phosphors and the results of density functional theory calculations was made. Arising from the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such a moiety can increase the highest-occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent phosphor with 2-phenylpyridine ligands. Remarkably, the excited-state properties can be manipulated through ligand and substituent effects that allow the tuning of phosphorescence energies from bluish green to deep red.
Resumo:
By fusing an electron-deficient ring system with the phenyl ring of a 2-phenylpyridine (ppy)-type ligand, a new and synthetically versatile strategy for the phosphorescence color tuning of cyclometalated iridium(III) and platinum(II) metallophosphors has been established. Two robust red electrophosphors with enhanced electron-injection/electron-transporting features were prepared by using an electron-trapping fluoren-9-one chromophore in the ligand design. The thermal, photophysical, redox and electrophosphorescent properties of these complexes are reported. These exciting results can be attributed to a switch of the metal-to-ligand charge-transfer (MLCT) character of the transition from the pyridyl groups in the traditional Ir-III or Pt-II ppy-type complexes to the electron-deficient ring core, and the spectral assignments corroborate well with the electrochemical data as well as the timedependent density functional theory (TD-DFT) calculations. The electron-withdrawing character of the fused ring results in much more stable MLCT states, inducing a substantial red-shift of the triplet emission energy from yellow to red for the Ir-III complex and even green to red for the PtII counterpart.
Resumo:
Cost-effective organic sensitizers will play a pivotal role in the future large-scale production and application of dye-sensitized solar cells. Here we report two new organic D-pi-A dyes featuring electron-rich 3,4-ethylenedioxythiophene- and 2,2'-bis(3,4-ethylenedioxythiophene)-conjugated linkers, showing a remarkable red-shifting of photocurrent action spectra compared with their thiophene and bithiophene counterparts. On the basis of the 3-f{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bis(3,4-ethylenedioxythiophene)-5-yl}2-cyanoacrylic acid dye, we have set a new efficiency record of 7.6% for solvent-free dye-sensitized solar cells based on metal-free organic sensitizers. Importantly, the cell exhibits an excellent stability, keeping over 92% of its initial efficiency after 1000 h accelerated tests under full sunlight soaking at 60 degrees C. This achievement will considerably encourage further design and exploration of metal-free organic dyes for higher performance dye-sensitized solar cells.
Resumo:
Distributed Bragg reflectors (DBR) with different reflection wavelengths were designed, and were used to fabricate microcavity organic light-emitting diodes (OLEDs) based on tris(8-hydroxyquinoline)-aluminum (Alq(3)) as the emitter and N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB) as the hole-transporting layer. The microcavity was composed of DBR dielectric mirror and metal electrode aluminum (Al) mirror. Some effects of vertical optical Fabry-Perot microcavity on spontaneous emission in OLEDs were investigated. Spectral narrowing, enhancement of emitting intensity and anglular dependence of emission were observed due to the microcavity effect. It was found experimentally that the utilization of DBR is a better method to adjust the emissive mode in the resonant cavity in OLEDs well. Thus the realization of different color light emission becomes possible by the combination of carefully designed microcavity and electroluminescent organic semiconductors in a single LED.
Resumo:
Novel blue-emitting phosphorescent iridium(III) complexes with fluorinated 1,3,4-oxadiazole derivatives as cyclometalated ligands and dithiolates as ancillary ligands have been synthesized and fully characterized; highly efficient OLEDs have been achieved using these complexes in the light-blue to blueemitting region.
Resumo:
We demonstrate the pH-induced assembly of 2-mercaptosuccinic acid-functionalized silver nanoparticles (MSA-Ag NPs) in the absence of hard or soft template. Two-dimensional (2D) and three-dimensional (3D) networks of silver NPs were achieved by tuning pH of the medium. The assembly process was monitored using atomic forces microscopy. The key factor affects the formation of network of silver NPs may be intermolecular hydrogen bonding between two carboxylic acid groups of MSA on two adjacent silver NPs.
Resumo:
A polymeric supramolecule consisting of symmetric polystyrene-block-poly(4-vinylpytidine) (PS-b-P4VP), dodecylbenzenesulfonic acid (DBSA), and 3-pentadecylphenol (PDP) was formed by proton transfer and hydrogen bonding. The surface morphology,of a thin film of the polymeric supramolecule has been investigated. The spherical PS microdomains embedded in a P4VP(DBSA)(1.0)(PDP)(1.0) matrix are observed for the as-cast film because the weight fraction, f(comb), of the P4VP(DBSA) (1.0)(PDP)(1.0) blocks is much higher than that of PS as a result of the non-covalent interactions of P4VP and DBSA and DBSA and PDR Upon annealing the PS-b-P4VP(1:1)(DBSA)(1.0)(PDP)(1.0) film at high temperatures, the hydrogen bonding between the DBSA and PDP diminishes, which leads to a change of overall morphology from an ordered sphere to a pitted structure.
Resumo:
Using Nd: YAG laser (532 nm) pumped mixed-dye laser. we obtained the output of this dye enhanced at the wavelength interval equivalent to that given by the copper vapor laser pumped dye laser. This measure favored is with the measurement of single-color three-photon resonant ionization spectrum of atomic uranium in the range of 562-586 nm,which is otherwise not efficiently covered by Nd: YAG laser pumped dye laser with any single dye. Thus 140 U I energy levels were obtained and the peaks of interest 575.814 nm and 575.836 rim were well resolved and their relative intensity determined.
Resumo:
The lasing properties of a soluble conjugated polymer, Poly[1,8-octanedioxy-2,6-dimethoxy-1,4-phenylene-1,2-ethenylene-1,2-phenylene-1,2-ethenylene-3,5-dimethoxy-1,4-phenylene] (CNMBC-Ph) in chloroform solution were investigated. The third harmonic radiation of a Nd:YAG laser was used as the pump light. The stimulated emission with a linewidth of 15 nm was observed in the blue wavelength region with the peak at 450 nm. The threshold pulse peak power was about 2.8 MW/cm(2). The energy conversion yield of the laser was estimated to be about 3.4%. The maximum peak power of the laser output pulse reached 40 kW. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Thin films of an organo-soluble polyimide based on 1,4-(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) and 2,2'-dimethyl-4,4'-methylene dianiline (DMMDA) have been studied. A prism coupler was used to measure the refractive indices. The average refractive indices of thin films prepared by annealing at different temperatures and times were chosen to characterize the condensation states of thin films. Thin films annealed at 200 degrees C show irreversible changes in physical properties, eg solubility. FTIR spectroscopy showed that the chain structures of the above thin films remained unchanged. It is proposed that specific molecular interactions induce the irreversible changes revealed by fluorescence spectroscopy. (C) 2000 Society of Chemical Industry.
Resumo:
A dye laser based on the soluble conjugated polymer, Poly[1,8-octanedioxy-2,6-dimethoxy-1,4-phenylene-1,2-ethenylene-1, 4-phenylene-1,2-ethenylene-3,5-dimethoxy-1,4-phenylene], has been fabricated. The laser was pumped by light pulses from the third harmonic radiation of an Nd:YAG laser. The lasing was observed in the blue wavelength region with the peak at 450 nm. The threshold energy is about 19 mu J. The energy conversion yield of the laser is about 3.4%. The maximum peak power of the laser output pulse arrives at about 20 kW.