197 resultados para time-resolved fluorescence immunoassay
Resumo:
General expressions used for extracting the orientation and alignment parameters of a symmetric top molecule from laser-induced fluorescence (LIF) intensity are derived by employing the density matrix approach. The molecular orientation and alignment are described by molecular state multipoles. Excitation and detection are circularly and linearly polarized lights, respectively. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population, ten orientation and fourteen alignment multipoles. The problem of how to extract the initial molecular state multipoles from the resolved LIF intensity is discussed.
Resumo:
A quantitative analysis of the individual compounds in tobacco essential oils is performed by comprehensive two-dimensional gas chromatography (GC x GC) combined with flame ionization detector (FID). A time-of-flight mass spectrometer (TOF/MS) was coupled to GC x GC for the identification of the resolved peaks. The response of a flame ionization detector to different compound classes was calibrated using multiple internal standards. In total, 172 compounds were identified with good match and 61 compounds with high probability value were reliably quantified. For comparative purposes, the essential oil sample was also quantified by one-dimensional gas chromatography-mass spectrometry (GC/MS) with multiple internal standards method. The results showed that there was close agreement between the two analysis methods when the peak purity and match quality in one-dimensional GC/MS are high enough. (c) 2005 Elsevier B.V. All rights reserved.