219 resultados para optoelectronic devices
Resumo:
2,7-Bis(9-ethylcarbazol-3-yl)-9,9-di(2-ethylhexyl)fluorene and a segmented copolymer composed of the same chromophores alternated with hexamethylene fragments were synthesized. The obtained materials possess good solubility in common organic solvents, high thermal stability with 1% weight loss temperature of 350-370 degrees C, and suitable glass transition temperatures. Both derivatives show blue fluorescence in dilute solutions as well as in solid state, demonstrating that excimers are not formed in the thin films. The fluorescence spectra of the materials do not show any peaks in the long-wavelength region even after annealing at 200 degrees C in air. An organic LED with the configuration of ITO/copolymer/Al generates blue electroluminescence with the maximum peak at 416 nm, rather low turn-on voltage (4.0 V), and brightness of about 400 cd/m(2). The heterostructure device based on model derivative emitted stable blue light with low operation voltage (100 cd/m(2) at similar to 11 V) and demonstrated luminescence efficiency of 0.8 cd/A.
Resumo:
We studied the memory effect in the devices consisting of dye-doped N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine sandwiched between indium-tin oxide and Ag electrodes. It was found that the on/off current ratio was greatly improved by the doped fluorescent dyes compared with nondoping devices. A mechanism of charge trapping was demonstrated to explain the improvement of the memory effect. For the off state, the conduction process is dominated by the trapping current, which is a characteristic of the space-charge limited current, whereas the on state is dominated by the detrapping current, and interpreted by Poole-Frenkel emission.
Resumo:
The effect of the concentration of 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl- 9-enyl)-4H-pyran(DCJTB) as dopant in tris(8-hydroxyquinoline) aluminium (Alq(3)) on the charge carrier recombination was studied by transient electroluminescence (EL). The electron-hole recombination coefficient (gamma) was determined from the long-time component of the temporal decay of the EL intensity after a rectangular voltage pulse was turned off. It was found that the coefficient monotonically decreased with an increase in the DCJTB-doping concentration. The monotonic decrease is attributed to concentration quenching on the excitons and coincided well with the reduction of the EL efficiency.
Resumo:
The effect of copper phthalocyanine (CuPc) and LiF interfacial layers on the charge-carrier injection in NN'-di(naphthalene-l-yl)N,N'-diphenyl-benzidine (NPB)/tris(8-hydroxyquinoline) aluminium (Alq(3)) organic heterojunction devices have been studied through the analysis of current-voltage characteristics. The investigation clearly demonstrated that the hole injection into NPB from anode is Fowler-Nordheim (FN) tunneling and the electron injection into Alq3 from cathode is Richardson-Schottky (RS) thermionic emission. The barrier heights obtained from the FN and RS models proved that the band alignments for charge-carrier injection are greatly improved by the CuPc and LiF interfacial layers, which should fully clarify the role of the interfacial layer on the improvement of device performance.
Resumo:
Stacked organic light-emitting devices (OLEDs) based on a europium complex Eu(TTA)(3) (Tmphen) (TTA = thenoyltrifluoroacetone,Tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) were fabricated. In this stacked OLEDs, Li:BCP/V2O5 was used the intermediate charge generation layer sandwiched between two identical emissive units consisting of TPD/CBP:DCJTB:Eu(TTA)(3)(Tmphen)/BCP. As expected, the brightness and electroluminescent (EL) current efficiency were approximately enhanced by double times that of conventional single-unit devices. The stacked OLEDs showed the maximum luminance up to 3000 cd/m(2) at a current density of 190 mA/cm(2) and a current efficiency of 14.5 cd/A at a current density of 0.08 mA/cm(2). At the brightness of 100 cd/m(2), the current efficiency reached 10 cd/A at a current density of 1.6 mA/cm2.
Resumo:
An efficient cathode NaCl/Ca/Al used to improve the performance of organic light-emitting devices (OLEDs) was reported. Standard NM-bis(1-naphthyl)-NAP-diphenyl-1,1' biphenyl 4,4'-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq(3)) devices with NaCl/Ca/Al cathode showed dramatically enhanced electroluminescent (EL) efficiency. A power efficiency of 4.6 lm/W was obtained for OLEDs with 2 nm of NaCl and 10 nm of Ca, which is much higher than 2.0 lm/W, 3.1 lm/W, 2.1 lm/ W and 3.6 lm/W in devices using, respectively, the LiF (1 nm)/Al, LiF (1 nm)/Ca (10 nm)/Al, Ca (10 nm)/Al and NaCl (2 nm)/ Al cathodes. The investigation of the electron injection in electron-only devices indicates that the utilization of the NaCl/Ca/Al cathode substantially enhances the electron injection current, which in case of OLEDs leads to the improvement of the brightness and efficiency.
Resumo:
Negative differential resistance ( NDR) and multilevel memory effects were obtained in organic devices consisting of an anthracene derivative, 9,10-bis-{ 9,9-di-[ 4-(phenyl-p-tolyl-amino)-phenyl]-9H-fluoren-2-yl}-anthracene ( DAFA), sandwiched between Ag and ITO electrodes. The application of a negative bias voltage leads to negative differential resistance in current-voltage characteristics and different negative voltages produce different conductance currents, resulting in the multilevel memory capability of the devices. The NDR property has been attributed to charge trapping at the DAFA/Ag interface. This opens up a wide range of application possibilities of such organic-based NDR devices in memory and logic circuits.
Resumo:
Organic white-light-emitting devices ( OLEDs) based on a multimode resonant microcavity defined by a pair of dielectric mirrors and metal mirrors were presented. By selective effects of the quarter-wave dielectric stack mirror on mode, white light emission containing three individual narrow peaks of red, green and blue was achieved, and showed weak dependence on the viewing angle. The Commission Internationale De L'Eclairage ( CIE) chromaticity coordinates changed from ( 0.29, 0.37) at 0 degrees to ( 0.31, 0.33) at 40 degrees. Furthermore, the brightness and electroluminescence efficiency of the microcavity OLEDs were enhanced compared with noncavity OLEDs. The maximum brightness reached 1940 cd m(-2) at a current density of 200 mA cm(-2), and the maximum current efficiency and power efficiency are 1.6 cd A(-1) at a current density of 12 mA cm(-2) and 0.41 1m W-1 at a current density of 1.6 mA cm(-2), which are over 1.6 times higher than that of a noncavity OLED.
Resumo:
The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indium-tin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.
Resumo:
Two kinds of carbazole-based molecules connected with diphenylamine and carbazole are synthesized by modified Ullmann reaction. Comparative study on their thermal stability, redox behavior, hole injection and transport properties are present. The results demonstrate that the carbazole-based molecules are very promising hole-transporting materials for electroluminescent devices.
Resumo:
An efficient organic light-emitting device using a trivalent europium (Eu) complex Eu(Tmphen)(TTA)(3) (TTA=thenoyltrifluoroacetone, Tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) as the dopant emitter was fabricated. The devices were a multilayer structure of indium tin oxide/N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl-4,4-diamine (40 nm)/ Eu complex:4,4-N,N-dicarbazole-biphenyl (1%, 30 nm)/2,9-dimethyl,4,7-diphenyl-1,10phenanthroline (20 nm)/AlQ (30 nm)/LiF (1 nm)/Al (100 nm). A pure red light with a peak of 612 nm and a half bandwidth of 3 nm, which is the characteristic emission of trivalent europium ion, was observed. The devices show the maximum luminance up to 800 cd/m(2), an external quantum efficiency of 4.3%, current efficiency of 4.7 cd/A, and power efficiency of 1.6 lm/W. At the brightness of 100 cd/m(2), the quantum efficiency reaches 2.2% (2.3 cd/A).
Resumo:
We report a blue organic light-emitting device having an emissive layer of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD), that exhibits excited state intramolecular proton transfer (ESIPT). The device had a luminance efficiency of 0.8 cd/A and a maximum brightness of 870 cd/m(2). Electroluminescence spectra revealed a dominating peak at 450 nm and two additional peaks at 480 and 515 nm with a full width at half maximum of 50 nm. Our studies indicate that some EL may originate from the triplet excitation state of the enol form of HOXD.
Resumo:
A series of alternating copolymers containing triphenylamine (TPA) moieties and oligomeric PPV segments in the main chain have been synthesized by Wittig condensation. The resulting polymers exhibit good thermal stability with decomposition temperatures (Tds) above 305 degreesC under nitrogen at 10 degreesC/min, and high glass transition temperatures (Tgs). They show intense photoluminescence in solution and film. The single-layer electroluminescent device using TAA-PV1 as emissive layer emits green light at 522nm with a turn-on voltage of 6V and maximum brightness of about 200cd/m(2) at 20V.