214 resultados para nonlinear optical materials


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a configuration of optical far-field scanning microscopy, super-resolution achieved by inserting a third-order optical nonlinear thin film is demonstrated and analyzed in terms of the frequency response function. Without the thin film the microscopy is diffraction limited; thus, subwavelength features cannot be resolved. With the nonlinear thin film inserted, the resolution is dramatically improved and thus the microscopy resolves features significantly smaller than the smallest spacing allowed by the diffraction limit. A theoretical model is established and the device is analyzed for the frequency response function. The results show that the frequency response function exceeds the cutoff spatial frequency of the microscopy defined by the laser wavelength and the numerical aperture of the convergent lens. The main contribution to the improvement of the cutoff spatial frequency is from the phase change induced by the complex transmission of the nonlinear thin film. Experimental results are presented and are shown to be consistent with the results of theoretical simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the nonlinear photonics of rare-earth-doped oxyfluoride nanophase vitroceramics (FOV), oxyfluoride glass (FOG), and ZBLAN fluoride glass. We found that an interesting fluorescence intensity inversion phenomenon between red and green fluorescence occurs from Er(0.5)Yb(3):FOV The dynamic range Sigma of the intensity inversion between red and green fluorescence of Er(0.5)Yb(3):FOV is about 5.753 x 10(2), which is 100 to 1000 times larger than those of other materials. One of the applications of this phenomenon is double-wavelength fluorescence falsification-preventing technology, which is proved to possess the novel antifriction loss and antiscribble properties. (c) 2007 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New broadband near infrared luminescence covering the whole work windows (1260-1625 nm) of the current wavelength division multiplexing (WDM) system was found from bismuth-activated M2O-Al2O3-SiO2 (M = Li, Na) and Li2O-Ta2O5-SiO2 glasses at room temperature in the case of 808 nm-laser excitation. But the near infrared luminescence mechanism of the bismuth-activated glasses is not well understood up to now. The figure-of-merits of bandwidth and gain of the glasses are better than those of Er3+-doped silicate glasses and Ti3+ doped sapphire, implying they are the promising gain-medium candidates for the broadband amplifiers and the widely tunable laser sources. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The idler is separated from the co-propagating pump in a degenerate four-wave mixing (DFWM) with a symmetrical parametric loop mirror (PALM), which is composed of two identical SOAs and a 70 m highly-nonlinear photonic crystal fiber (HN-PCF). The signal and pump are coupled into the symmetrical PALM from different ports, respectively. After the DFWM based wavelength conversion (WC) in the clockwise and anticlockwise, the idler exits from the signal port, while the pump outputs from its input port. Therefore, the pump is effectively suppressed in the idler channel without a high-speed tunable filter. Contrast to a traditional PALM, the DFWM based conversion efficiency is increased greatly, and the functions of the amplification and the WC are integrated in the smart SOA and HN-PCF PALM. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10(-9) BER for a 10 Gb/s 2(31)-1 pseudo random bit sequence (PRBS) data. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel silicon-on-insulator thermo-optic variable optical attenuator with isolated grooves based on a multimode interference coupler principle is fabricated by the inductive coupled plasma etching technology. The maximum fibre-to-fibre insertion loss is lower than 2.2 dB, the dynamic attenuation range is from 0 to 30 dB in the wavelength range 1500-1600 nm, and the maximum power consumption is only 140 mW. The response frequency of the fabricated variable optical attenuator is about 30 kHz. Compared to the variable optical attenuator without isolated grooves, the maximum power consumption decreases more than 220 mW, and the response frequency rises are more than 20 kHz.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present review, the measuring principle of reflectance difference spectroscopy (RDS) is given. As a powerful tool in the surface and interface analysis technologies, the application of RDS to the research on semiconductor materials is summarized. along with the origins of the in-plane optical anisotropy of semiconductors. And it is believed that RDS will play an important role in the electrooptic modification of Si-based semiconductor materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate slow-light pulse propagation in an optical fiber via transient stimulated Brillouin scattering. Space-time evolution of a generating slow-light pulse is numerically calculated by solving three-wave coupled-mode equations between a pump beam, an acoustic wave, and a counterpropagating signal pulse. Our mathematical treatments are applicable to both narrowband and broadband pump cases. We show that the time delay of 85% pulse width can be obtained for a signal pulse of the order of subnanosecond pulse width by using a broadband pump, while the signal pulse is broadened only by 40% of the input signal pulse. The physical origin of the pulse broadening and distortion is explained in terms of the temporal decay of the induced acoustic field. (C) 2009 Optical Society of America