322 resultados para ethylene carbonate
Resumo:
The kinetics of the thermal degradation of poly(propylene carbonate) (PPC) were investigated with different kinetic methods with data from thermogravimetric analysis under dynamic conditions. The apparent activation energies obtained with different integral methods (Ozawa-Flynn-Wall and Coats-Redfern) were consistent with the values obtained with the Kinssinger method (99.93 kJ/mol). The solid-state decomposition process was a sigmoidal A(3) type in terms of the Coats-Redfern and Phadnis-Deshpande results. The influence of the heating rate on the thermal decomposition temperature was also studied. The derivative thermogravimetry curves of PPC confirmed only one weight-loss step.
Resumo:
The multiple melting behavior of several commercial resins of isotactic polypropylene (iPP) and random copolymer, poly(propylene-co-ethylene) (PPE), after stepwise isothermal crystallization (SIC) were studied by differential scanning calorimeter and wide-angle X-ray diffraction (WAXD). For iPP samples, three typical melting endotherms appeared after SIC process when heating rate was lower than 10 degreesC/min. The WAXD experiments proved that only alpha-form crystal was formed during SIC process and no transition from alpha1- to alpha2-form occurred during heating process. Heating rate dependence for each endotherm was discussed and it was concluded that there were only,two major crystals with different thermal stability. For the PPE sample, more melting endotherms appeared after stepwise isothermal crystallization. The introduction of ethylene comonomer in isotactic propylene backbone further decreased the regularity of molecular chain, and the short isotactic propylene sequences could crystallize into gamma-form crystal having a low melting temperature whereas the long sequences crystallized into alpha-form crystal having high melting temperature.
Resumo:
The influences of nucleating agent EDBS on crystallization behavior and properties of polypropylene UP) and its copolymer with a small amount (4. 48 %, molar fraction) of ethylene (CPP) were studied. DSC results indicated that the crystallization temperature of iPP and CPP samples with 0.5 % (mass fraction) EDBS obviously increased and the degree of crystallinity of these samples became higher. In addition, adding small amount of EDBS enhanced the crystallization of the low isotacticity and low molecular weight segments of the CPP. PLM results showed that their spherulite size decreased markedly, and as a result, the transmittance and haze of the films were all improved.
Resumo:
Ansa-zirconocene complex with an allyl substituted silane bridge [(CH2=CHCH2)CH3Si(C5H4)(2)]ZrCl2 (1a) has been synthesized and characterized. The molecular structure of la has been determined by X-ray crystallographic analysis. The polymer immobilized metallocene catalyst 1b is prepared by the co-polymerization of la with styrene in the presence of radical initiator. The result of ethylene polymerization showed that the polymer immobilized metallocene catalyst kept high activity for ethylene polymerization and was a potential supported catalyst for olefin polymerization.
Resumo:
Ethylene polymerization was carried out with zirconocene catalysts supported on montmorillonite (or functionalized montmorillonite). The functionalized montmorillonite was from simple ion exchange of [CH3O2CCH2NH3](+) (MeGlyH(+)) ions with interlamellar cations of layered montmorillonites. The functionalized montmorillonlites [high-purity montmorillonite (MMT)-MeGlyH(+)] had larger interlayer spacing (12.69 Angstrom) than montmorillonites without treatment (9.65 Angstrom). The zirconocene catalyst system [Cp2ZrCl2/methylaluminoxane (MAO)/MMT-MeGlyH(+)] had much higher Zr loading and higher activities than those of' other zirconocene catalyst systems (Cp2ZrCl2/MMT, Cp2ZrCl2/MMT-MeGlyH(+), Cp2ZrCl2/MAO/MMT, [CP2ZrCl](+)[BF4]/MMT, [Cp2ZrCl][BF4](-)/MMT-MeGlyH(+), [CP2ZrCl](+)[BF4](-)/MAO/MMT-MeGlyH(+), and [Cp2ZrCl](+)[BF4](-)/MAO/MMT). The polyethylenes with good bulk density were obtained from the catalyst systems, particularly (CP2ZrCl2/MAO/MMT-MeGlyH(1)). MeGlyH(+) and MAO seemed to play important roles for preparation of the supported zirconocenes and polymerization of ethylene. The difference in Zr loading and catalytic activity among the supported zirconocene catalysts is discussed.
Resumo:
In this article, the polydispersity of the ethylene sequence length (ESL) in ethylene/alpha-olefin copolymers was studied by atomic force microscopy (AFM) and the thermal-fractionation technique. The crystal morphology observation by AFM showed that morphology changed gradually with decreasing average ESL from complete lamellae over shorter and more curved lamellae to a granular-like morphology, and the mixed morphology was observed after stepwise crystallization from phase-separated melt. This result indicated that the ethylene sequence with different lengths crystallized into a crystalline phase with a different size and stability at the copolymer systems. The thermal-fractionation technique was used to characterize the polydispersity of ESL. Three of the following statistical terms were introduced to describe the distribution of ESL and the lamellar thickness: the arithmetic mean (L) over bar (n), the weight mean (L) over bar (w), and the broadness index I = (L) over bar (w)/(L) over bar (n). It was concluded that the polydispersity of ESL could be quantitatively characterized by the thermal-fractionation technique. The effects of temperature range, temperature-dependent specific heat capacity C-p of copolymer, and the molecular weight on the results of thermal fractionation were discussed,
Resumo:
In this work, crystallization and melting behavior of metallocene ethylene/alpha-olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting-recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain-folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation.
Resumo:
The polymerized metallocene catalyst 4 was prepared by the co-polymerization of ansa-zirconocene complex [
Resumo:
Conducting polyaniline-poly(ethylene oxide) blends were prepared from their aqueous solutions. The blends displayed an electrical conductivity percolation threshold as low as 1.83 wt % of polyaniline loading. As demonstrated by scanning electron microscopy, polarized optical microscopy, and wide-angle X-ray diffraction studies, the conducting polyaniline took a fibrillar morphology in the blend, and it existed only in the amorphous phase of poly(ethylene oxide). A three-phase model combining morphological factors instead of a two-phase model was proposed to explain the low-conductivity percolation threshold.