239 resultados para Spleen -- immunology
Resumo:
Manganese superoxide dismutase (MnSOD) plays an important role in crustacean immune defense reaction by eliminating oxidative stress. Knowledge on MnSOD at molecular level allows us to understand its regulatory mechanism in crustacean immune system. A novel mitochondrial manganese superoxide dismutase (mMnSOD) was cloned from hepatopancreas of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1185 bp with a 660 bp open reading frame, encoding 220 amino acids. The deduced amino acid sequence contains a putative signal peptide of 20 amino acids. Sequence comparison showed that the mMnSOD of F. chinensis shares 88% and 82% identity with that of giant freshwater prawn Macrobrachium rosenbergii and blue crab Callinectes sapidus, respectively. mMnSOD transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill by Northern blotting. RT-PCR analysis indicated that mMnSOD showed different expression profiles in shrimp hemocytes and hepatopancreas after artificial infection with while spot syndrome virus (WSSV). In addition, a fusion protein containing mMnSOD was produced in vitro. LC-ESI-MS analysis showed that two peptide fragments (-GDVNTVISLAPALK- and -NVRPDYVNAIWK-) of the recombinant protein were identical to the corresponding sequence of M. rosenbergii mMnSOD, and the enzyme activity of the refolded recombinant protein was also measured. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Lysozyme is a widely distributed hydrolase possessing lytic activity against bacterial peptidoglycan, which enables it to protect the host against pathogenic infection. In the present study, the cDNA of an invertebrate goose-type lysozyme (designated CFLysG) was cloned from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of CFLysG consisted of 829 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame (ORF) of 603 bp encoding a polypeptide of 200 amino acid residues with a predicted molecular weight of 21.92 kDa and theoretical isoelectric point of 7.76. The high similarity of CFLysG with goose-type (g-type) lysozymes in vertebrate indicated that CFLysG should be an invertebrate counterpart of g-type lysozyme family, which suggested that the origin of g-type lysozyme preceded the emergence of urochordates and even preceded the emergence of deuterostomes. Similar to most g-type lysozymes, CFLysG possessed all conserved features critical for the fundamental structure and function of g-type lysozymes, such as three catalytic residues (Glu 82, Asp 97, Asp 108). By Northern blot analysis, mRNA transcript of CFLysG was found to be most abundantly expressed in the tissues of gills, hepatopancreas and gonad, weakly expressed in the tissues of haemocytes and mantle, while undetectable in the adductor muscle. These results suggested that CFLysG could possess combined features of both the immune and digestive adaptive lysozymes. To gain insight into the in vitro lytic activities of CFLysG, the mature peptide coding region was cloned into Pichia pastoris for heterogeneous expression. Recombinant CFLysG showed inhibitive effect on the growth of both Gram-positive and Gram-negative bacteria with more potent activities against Gram-positive bacteria, which indicated the involvement of CFLysG in the innate immunity of C. farreri. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Antimicrobial peptides are important components of the host innate immune responses by exerting broad-spectrum microbicidal activity against pathogenic microbes. The first mollusk big defensin (designated AiBD) cDNA was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The scallop AiBD consisted of 531 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 122 amino acids. The high similarity of AiBD deduced amino acid sequence with big defensin from Tachypleus tridentatus and Branchiostoma belcheri tsingtaunese indicated that AiBD should be a member of big defensin family. The expression of AiBD in various tissues was measured by using Northern blotting analysis. mRNA transcripts of AiBD could be detected in haemocytes of unchallenged scallops. The temporal expression of AiBD in haemolymph after Vibrio anguilarum challenge was recorded by quantitative real time PCR. The relative expression level of AiBD in haemolymph was up-regulated evenly in the first 8 h, followed by a drastic increase, and increased 131.1-fold at 32 h post-injection. These results indicated that AiBD could be induced by bacterial challenge, and it should participate in the immune responses of A. irradians. Biological activity assay revealed that recombinant AiBD could inhibit the growth of both Gram-positive and Gram-negative bacteria, and also showed strong fungicidal activity towards the expression host. Recombinant expression of AiBD made it possible to further characterize its functions involved in immune responses, and also provided a potential therapeutic agent for disease control in aquaculture. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Lectins are a family of carbohydrate-recognition proteins which play crucial roles in innate immunity. In this study, a new lectin (CfLec-2) gene was cloned from Chlamys farreri by EST and RACE approaches. The full-length cDNA of CfLec-2 was composed of 708 bp, encoding a typical Long form carbohydrate-recognition domain of 130 residues. The deduced amino acid sequence showed high similarity to Brevican in Homo sapiens, C-type lectin-1 and lectin-2 in Anguilla japonica. The cDNA fragment encoding the mature peptide of CfLec-2 was recombined into plasmid pET-32a (+) and expressed in Escherichia coli Rosseta-Gami (DE3). The recombinant CfLec-2 (rCfLec-2) protein exhibited aggregative activity toward Staphylococcus haemolyticus, and the agglutination could be inhibited by D-mannose but not EDTA or D-galactose, indicating that CfLec-2 was a Ca2+ independent lectin. Moreover, rCfLec-2 could suppress the growth of E. coli TOP10F'. These results suggested that CfLec-2 was perhaps involved in the recognition and clearance of bacterial. pathogens in scallop. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are Ca2+-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a T-terminal. untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7-and 4.9-fold at 6 h after injury and 8 h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury heating and the immune response in A. irradians. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Serine proteases play critical roles in a variety of invertebrate immune defense responses, including hemolymph coagulation, antimicrobial peptide synthesis, and melanization. The first mollusk serine protease with clip-domain (designated CFSP1) cDNA was obtained from the scallop Chlamys farreri challenged with Vibrio anguillarum by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA ends (RACE). The full-length cDNA of the C. farreri serine protease was 1211 bp, consisting of a 5-terminal untranslated region (UTR) of 72 bp, a 3'-terminal UTR of 77 bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1062 bp. The CFSP1 cDNA encoded a polypeptide of 354 amino acids with a putative signal peptide of 19 amino acids and a mature protein of 335 amino acids. The deduced amino acid sequence of CFSP1 contained an amino-terminal clip domain, a low complexity region, and a carboxyl-terminal serine protease domain. CFSP1 mRNA was mainly expressed constitutively in the hemocytes and was up-regulated and increased 2.9- and 1.9-fold at 16 h after injury and injection of bacteria. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Dicer is a member of the RNAase III family which catalyzes the cleavage of double-stranded RNA to small interfering RNAs and micro RNAs, and then directs sequence-specific gene silencing. In this paper, the full-length cDNA of Dicer-1 was cloned from white shrimp Litopenaeus vannamei (designated as LvDcr1). It was of 7636 bp, including a poly A tail, a 5' UTR of 136 bp, a 3' UTR of 78 bp, and an open reading frame (ORF) of 7422 bp encoding a putative protein of 2473 amino acids. The predicted amino acid sequence comprised all recognized functional domains found in other Dicer-1 homologues and showed the highest (97.7%) similarity to the Dicer-1 from tiger shrimp Penaeus mondon. Quantitative real-time PCR was employed to investigate the tissue distribution of LvDcr1 mRNA, and its expression in shrimps under virus challenge and larvae at different developmental stages. The LvDcr1 mRNA could be detected in all examined tissues with the highest expression level in hemocyte, and was up-regulated in hemocytes and gills after virus injection. These results indicated that LvDcr1 was involved in antiviral defense in adult shrimp. During the developmental stages from fertilized egg to postlarva VII, LvDcr1 was constitutively expressed at all examined development stages, but the expression level varied significantly. The highest expression level was observed in fertilized eggs and followed a decrease from fertilized egg to nauplius I stage. Then, the higher levels of expression were detected at nauplius V and postlarva stages. LvDcr1 expression regularly increased at the upper phase of nauplius, zoea and mysis stages than their prophase. The different expression of LvDcr1 in the larval stages could provide clues for understanding the early innate immunity in the process of shrimp larval development. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P < 0.01) after scallops were stimulated by LPS. PGN or beta-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant Cflec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind beta-glucan. Immunofluorescence assay with polyclonal antibody specific for Cflec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Lipopolysaccharide and beta-1, 3-glucan binding protein (LGBP) is a kind of pattern recognition receptor, which can recognize and bind LPS and beta-1, 3-glucan, and plays curial roles in the innate immune defense against Gram-negative bacteria and fungi. In this study, the functions of LGBP from Zhikong scallop Chlamys farreri performed in innate immunity were analyzed. Firstly, the mRNA expression of CfLGBP in hemocytes toward three typical PAMPS stimulation was examined by realtime PCR. It was up-regulated extremely (P < 0.01) post stimulation of LPS and beta-glucan, and also exhibited a moderate up-regulation (P < 0.01) after PGN injection. Further PAMPs binding assay with the polyclonal antibody specific for CfLGBP proved that the recombinant CfLGBP (designated as rCfLGBP) could bind not only LPS and beta-glucan, but also PGN in vitro. More importantly, rCfLGBP exhibited obvious agglutination activity towards Gram-negative bacteria Escherichia coil, Gram-positive bacteria Bacillus subtilis and fungi Pichia pastoris. Taking the results of immunofluorescence assay into account, which displayed CfLGBP was expressed specifically in the immune cells (hemocytes) and vulnerable organ (gill and mantle), we believed that LGBP in C farreri, serving as a multi-functional PRR, not only involved in the immune response against Gram-negative and fungi as LGBP in other invertebrates, but also played significant role in the event of anti-Gram-positive bacteria infection. As the first functional research of LGBP in mollusks, our study provided new implication into the innate immune defense mechanisms of C. farreri and mollusks. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Bacterial flagellin is known to induce potent immune response in vertebrate systems via the toll-like receptor (TLR) 5. As a result, flagellin has been studied extensively as a vaccine adjuvant. In a previous study, we examined the vaccine and adjuvant potentials of the flagellin (FliC) of the fish pathogen Edwardsiella tarda. We found that E. tarda FliC induced low protective immunity by itself but could function as a molecular adjuvant and potentiate the specific immune response induced by the E. tarda antigen Eta6. Since FliC is a large protein and organized into distinct structural domains, we wondered whether the immunostimulating effect observed with the full-length protein could be localized to a certain region. To investigate this question, we in the present study dissected the FliC protein into several segments according to its structural features: (i) N163, which consists of the conserved N-terminal 163 residues of FliC; (ii) M160, which consists of the variable middle 160 residues; (iii) C94, which consists of the conserved C-terminal 94 residues; (iv) NC257, which is an artificial fusion of N163 and C94. To examine the adjuvanticity of the FliC fragments, DNA vaccine plasmids expressing FliC fragments in fusion with Eta6 were constructed and used to immunize Japanese flounder. The results showed that N163 produced the best adjuvant effect, which, in respect to improvement in the relative percent survival of the vaccinated fish, was comparable to that of the full-length FliC. None of the other FliC fragments exhibited apparent immunopotentiating effect. Further analysis showed that N163 enhanced the production of serum specific antibodies and, like full-length FliC, significantly upregulated the expression of the genes that are possibly involved in innate and adaptive immunity. These results indicate that N163 is the immunodominant region of FliC and suggest that E. tarda FliC may induce immune responses in Japanese flounder via mechanisms alternative to that involving TLR5. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Peritrophin, one of the components of the peritrophic matrix, was first isolated from the intestine of insects. It is thought to protect insects from invasion of microorganisms and to stimulate digestion of food. Peritrophin-like proteins have also been found in crustaceans, as a component of the egg layer. In this study, one fragment of the peritrophin-like gene was obtained from fleshy prawn (Chinese shrimp) (Fenneropenaeus chinensis) by panning the T7 phage display library constructed with the shrimp hemocyte cDNA. The total sequence of the peritrophin cDNA was cloned by modified SMART cDNA and LD-PCR methods. The full cDNA is 1048 bp and the deduced protein is composed of 274 amino acids, including 21 amino acid signal peptide, and four peritrophin A domains and the latter three forming three chitin-binding domains. Similarity analysis results showed that the peritrophin-like protein from F chinensis has significant similarities with peritrophin-like and cortical rod proteins from other shrimp. It was inducing expression in hemocytes, heart, stomach, gut, and gills of the infected shrimp, and constitutive expression in the ovaries. No expression signal was detected in the hepatopancreas of either infected or noninfected shrimp. The recombinant peritrophin-like protein has the activity of binding Gram-negative bacteria and strong binding activity to chitin. Therefore, the bacteria and chitin binding activities of the peritrophin-like protein suggest that it may plays a role in immune defense and other physiological resposes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
CpG-containing oligodeoxynucleotides (ODNs) are known to be immunostimulatory in vertebrate systems and can activate both innate and adaptive immune responses. In this report, we described the selection, identification, and analysis of CpG motifs with immunoprotective effects in Japanese flounder. Sixteen CpG ODNs were synthesized and examined for the ability to inhibit bacterial dissemination in Japanese flounder blood. Four ODNs with the strongest inhibitory effects were selected and mixed to form ODNs 4M. In addition, a plasmid, pCN6, was constructed that contains the sequences of the four selected ODNs. When administered into Japanese flounder via intraperitoneal injection, both ODNs 4M and pCN6 could, in dose and time dependent manners, afford short-term protection against the infections of two different bacterial pathogens. Immunological analyses showed that ODNs 4M and, especially, pCN6 activated head kidney macrophages and enhanced serum bactericidal activity via probably the alternative pathway of complement activation. When used as a DNA vaccine to immunize Japanese flounder, pCN6 conferred apparent protections (42.9% and 52.6%, respectively, in terms of relative percent survival) against the challenges of two different fish pathogens at 4-week post-vaccination. Transcriptional analysis showed that vaccination with pCN6 upregulated the expression of the genes encoding NKEF, MHC II alpha, IL-1 beta, Mx, and MHC I alpha. These results demonstrate that ODNs 4M and pCN6 are immunostimulatory in Japanese flounder and can induce short- and long-term nonspecific protections against bacterial infections. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Cystatins are a superfamily of proteins as reversible inhibitor of cysteine proteinases which play essential roles in a spectrum of physiological and immunological processes In this study, a novel member of Cystatin superfamily was identified from Chinese mitten crab Enocheir sinensis (designated EsCystain) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approaches The full-length cDNA of EsCystatin was of 1486 bp, consisting of a 5'-terminal untranslated region (UTR) of 92 bp, a 3' UTR of 1034 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 360 bp encoded a polypeptide of 120 amino acids with the theoretical isoelectric point of 548 and the predicted molecular weight of 13 39 kDa. A signal Cystatin-like domain (Gly(25) to Lys(112)) was found in the putative amino acid sequences of EsCystatin Similar to other Cystatins, the conserved central Q(70)VVSG(74) motif was located in the Cystatin-like domain of EsCystatin But EsCystatin lacked of signal peptide and disulphide bond. The EsCystatin exhibited homology with the other known Cystatins from invertebrates and higher vertebrates, and it was clustered into Cystatin family 1 in the phylogenetic tree. The mRNA transcripts of EsCystain were mainly expressed in hemolymph, gill, hepatopancreas, gonad and muscle, and also marginally detectable in heart After Listonella anguillarum challenge, the relative expression level of EsCystatin in hemolymph was down-regulated to 0 6-fold (P < 0.05) at 3 h post-challenge. Subsequently, it was up-regulated to 3.0-fold (P < 0.01)at 24 h Afterwards. EsCystatin mRNA transcripts suddenly decreased to original level. After Pichia pastoris GS115 challenge, its mRNA expression level in hemolymph was up-regulated to the peak at 3 h (2 8-fold of that in blank (P < 0 01)) The cDNA fragment encoding the mature peptide of EsCystatin was recombined and expressed in Escherichia coli Rosetta-gami (DE3). The recombinant EsCystatin displayed a promoter inhibitory activity against papain When the concentration of EsCystatin protein was of 300 mu g mL(-1), almost 89% of papain activity could be inhibited. These results collectively suggested that EsCystatin was a novel member of protein in Cystatin family, was a potent inhibitor of papain and involved in immune response versus invading microorganisms. (C) 2010 Elsevier Ltd All rights reserved.
Resumo:
Edwardsiella tarda is the etiological agent of edwardsiellosis, a systematic disease that affects a wide range of marine and freshwater fish cultured worldwide. In order to identify E. tarda antigens with vaccine potential, we in this study conducted a systematic search for E. tarda proteins with secretion capacity. One of the proteins thus identified was Esa1, which contains 795 amino acid residues and shares extensive overall sequence identities with the D15-like surface antigens of several bacterial species. In silico analyses indicated that Esa1 localizes to outer membrane and possesses domain structures that are conserved among bacterial surface antigens. The vaccine potential of purified recombinant Esa1 was examined in a Japanese flounder (Paralichthys olivaceus) model, which showed that fish vaccinated with Esa1 exhibited a high level of survival and produced specific serum antibodies. Passive immunization of naive fish with antisera raised against Esa1 resulted in significant protection against E. tarda challenge. Taking advantage of the secretion capacity of Esa1 and the natural gut-colonization ability of a fish commensal strain, we constructed an Esa1-expressing recombinant strain, FP3/pJsa1. Western immunoblot and agglutination analyses showed that FP3/pJsa1 produces outer membrane-localized Esa1 and forms aggregates in the presence of anti-Esa1 antibodies. Vaccination analyses showed that FP3/pJsa1 as an intraperitoneal injection vaccine and an oral vaccine embedded in alginate microspheres produced relative percent survival rates of 79% and 52%, respectively, under severe challenging conditions that resulted in 92-96% mortality in control fish. Further analyses showed that following oral vaccination, FP3/pJsa1 was able to colonize in the gut but unable to disseminate into other tissues. Together these results indicate that Esa1 is a protective immunogen and an effective oral vaccine when delivered by FP3/pJsa1 as a surface-anchored antigen. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The globular C1q-domain-containing (C1qDC) proteins are a family of versatile pattern recognition receptors via their globular C1q (gC1q) domain to bind various ligands including several PAMPs on pathogens. In this study, a new gC1q-domain-containing protein (AiC1qDC-1) gene was cloned from Argopecten irradians by rapid amplification of cDNA ends (RACE) approaches and expressed sequence tag (EST) analysis. The full-length cDNA of AiC1qDC-1 was composed of 733 bp, encoding a signal peptide of 19 residues and a typical gC1q domain of 137 residues containing all eight invariant amino acids in human C1qDC proteins and seven aromatic residues essential for effective packing of the hydrophobic core of AiC1qDC-1. The gC1q domain of AiC1qDC-1, which possessed the typical 10-stranded beta-sandwich fold with a jelly-roll topology common to all C1q family members, showed high homology not only to those of Cl qDC proteins in mollusk but also to those of C1qDC proteins in human. The AiC1qDC-1 transcripts were mainly detected in the tissue of hepatopancreas and also marginally detectable in adductor, heart, mantle, gill and hemocytes by fluorescent quantitative real-time PCR. In the microbial challenge experiment, there was a significant up-regulation in the relative expression level of AiC1qDC-1 in hepatopancreas and hemocytes of the scallops challenged by fungi Pichia pastoris GS115, Gram-positive bacteria Micrococcus luteus and Gram-negative bacteria Listonella anguillarum. The recombinant AiC1qDC-1 (rAiC1qDC-1) protein displayed no obvious agglutination against M. luteus and L. anguillarum, but it aggregated P. pastoris remarkably. This agglutination could be inhibited by D-mannose and PGN but not by LPS, glucan or D-galactose. These results indicated that AiC1qDC-1 functioned as a pattern recognition receptor in the immune defense of scallops against pathogens and provided clues for illuminating the evolution of the complement classical pathway. (C) 2010 Elsevier Ltd. All rights reserved.