238 resultados para Selective harvesting
Resumo:
Ceria catalysts were found active and selective to the oxidehydrogenation of ethane (ODE) with CO2 and the actual contribution for C2H4 formation from heterogeneous catalysis was 75-55% in the range 953-993 K. The presence of calcium ions in solid solution in the ceria crystalline network increased significatively the selectivity to ethene and the efficiency of CO2 as oxidant in the heterogeneous reaction. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A kinetic model presented for the selective reduction of NO with CH4 over an InFe2O3/HZSM-5 catalyst by considering the process as a combination of two simultaneous reactions: NO+O2CH4 (reaction 1) and O-2+CH4 (reaction 2). Linear regression calculation was employed to find the kinetic parameters. It was found that although the activation energies of the two reactions were almost identical, the reaction rate constants were dramatically different, namely, k(1)much greater than k(2), indicating that the NO+O-2+CH4 reaction was more preferable to take place on the In-Fe2O3/HZSM-5 catalyst as compared with the O-2+CH4 reaction.
Resumo:
An oxygen permeable mixed ion and electron conducting membrane (OPMIECM) was used as an oxygen transfer medium as well as a catalyst for the oxidative dehydrogenation of ethane to produce ethylene. O2- species transported through the membrane reacted with ethane to produce ethylene before it recombined to gaseous O-2, so that the deep oxidation of the products was greatly suppressed. As a result, 80% selectivity of ethylene at 84% ethane conversion was achieved, whereas 53.7% ethylene selectivity was obtained using a conventional fixed-bed reactor under the same reaction conditions with the same catalyst at 800 degreesC. A 100 h continuous operation of this process was carried out and the result indicates the feasibility for practical applications.
Resumo:
With addition of methanol in acetic acid solvent, m-phenoxytoluene could be oxidized to m-phenoxybenzaldehyde selectively by a cobalt bromide catalyst. Paratemters such as the ratio of Co/Br and the reaction time of m-phenoxytoluene oxidation as well as visible spectra of cobalt bromide in acetic acid/methanol solvents, were also investigated. Addition of methanol caused the oxidation of aldehydes to proceed more slowly than it did solely in acetic acid solvent. The decrease of cobaltous-multibromides in acetic acid/methanol solvents was responsible for the improvement in the selective oxidation of m-phenoxytoluene. (C) 1999 Elsevier Science B.V. All rights reserved.