211 resultados para Scattering Anelastico Neutroni Diffusione Neutrone ILL Diffrattometro Fonone
Resumo:
The structural parameters of the aggregated state in the polyamide PA1010 and N,N'-bismaleimide-4,4'-diphenyl methane (BMI) system were computed by means of the desmearing intensity from SAXS and using the concept of the distance distribution function. The results revealed that the parameters Q, I(0), l(c) and L decreased with the increase BMI component, whereas O-s increased. The particle dimension Z for different BMI contents was less than 13.2 nm, and the maximum value of the distance distribution function P(Z) was found to be in the range Z = 6.5-7.0 nm.
Resumo:
A set of AM-AA copolymer samples with the same comonomer content and different average molecular weight have been characterized by C-13 NMB and light scattering methods in this paper. The chemical composition (comonomer AA, mole content 16.9 +/- 1.1%) of these samples is uniform. the sequence of AA in the macromolecular chain is of alone and random distribution and the light scattering theory from polyelectrolyte in added-salt solutions is suitable for the AM-AA copolymers-0.12 mol/L NaCl water systems. The actual values of M(w), the second Virial coefficient A(2) and the mean square radius of gyration (R(2)), for the studied samples have been obtained. The relationships between the molecular parameters are as follows: A(2)=0.0619 ($) over bar M(w)(-0.24), < R(2) >(1/2)(t)= 0.0210 ($) over bar M(w)(0.54).
Resumo:
The solution behavior of four chitosans (91% deacetylated chitin) with different molecular weights in 0.2M CH3COOH/0.1M CH3COONa aqueous solution was investigated at 25 degrees C by dynamic laser light scattering (LLS). The Laplace inversion of the precisely measured intensity-intensity time correlation function leads us to an estimate of the line-width distribution G(Gamma), which could be further reduced to a translational diffusion coefficient distribution G(D). By using a combination of static and dynamic LLS results, i.e. Mw and G(D), we were able to establish a calibration of D = k(D)M(-alpha D) with k(D) = (3.14 +/- 0.20) X 10(-4) and alpha(D) = 0.655 +/- 0.015. By using this calibration, we successfully converted G(D) into a molecular weight distribution f(w)(M). The larger alpha(D) value confirms that the chitosan chain is slightly extended in aqueous solution even in the presence of salts. This is mainly due to its backbone and polyelectrolytes nature. As a very sensitive technique, our dynamic LLS results also revealed that even in dilute solution chitosan still forms a small amount of larger sized aggregates that have ben overlooked in previous studies. The calibration obtained in this study will provide another way to characterize the molecular weight distribution of chitosan in aqueous solution at room temperature. (C) 1995 John Wiley & Sons, Inc.
Resumo:
The interface thickness in two triblock copolymers were determined using small-angle x-ray scattering in the context of the theory proposed by Ruland. The thickness was found to be nonexistent for the samples at three different temperatures. By viewing th
Resumo:
Surface-enhanced Raman scattering (SERS) of xanthopterin adsorbed on colloidal silver was measured and the Raman spectrum calculated by the density functional theory method was also obtained. Xanthopterin can be detected down to 5 X 10(-9) m and the enhancement of the scattering intensity is at least 10(5)-fold. Xanthopterin molecules are adsorbed flatly on the surface of the Ag particles. This study shows that SERS could be another prospective method for the detection of pterines. Copyright (C) 2001 John Wiley Sons, Ltd.
Resumo:
The dynamical Lie algebraic approach developed by Alhassid and Levine combined with intermediate picture is applied to the study of translational-vibrational energy transfer in the collinear collision between an atom and an anharmonic oscillator. We find that the presence of the anharmonic terms indeed has an effect on the vibrational probabilities of the oscillator. The computed probabilities are in good agreement with those obtained using exact quantum method. It is shown that the approach of dynamical Lie algebra combining with intermediate picture is reasonable in the treating of atom-anharmonic oscillator scattering.