252 resultados para Poly(methyl methacrylate) matrix


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystalline poly (3-hexylthiophene) (P3HT) nanofibrils are introduced into the P3HT: [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) composite films via P3HT preaggregation in solution by adding a small amount of acetone, and the correlation of P3HT nanofibrils and the optoelectronic properties of P3HT:PCBM bulk heterojunction photovoltaic cells is investigated. It is found that the optical absorption and the hole transport or the resulted P3HT:PCBM composite films increase with the increase of the amount of P3HT nanofibrils due to the increased P3HT crystallinity and highly interconnected nanofibrillar P3HT networks. However, it is also found that high contents of crystalline P3HT nanofibrils may restrain PCBM molecules from demixing with the P3HT component that forms electron traps in the active layer. and hence reduce the charge collection efficiency. Small contents of P3HT nanofibrils not only improve the demixing between P3HT and PCBM components, but also enhance the hole transport via crystalline P3HT nanofibrillar networks, resulting in efficient charge collection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(L-lactide) (PLA)/silica (SiO2) nanocomposites containing 1, 3, 5, 7, and 10 Wt % SiO2 nanoparticles were prepared by melt compounding in a Haake mixer. The phase morphology, thermomechanical properties, and optical transparency were investigated and compared to those of neat PLA. Scanning electron microscopy results show that the SiO2 nanoparticles were uniformly distributed in the PLA matrix for filler contents below 5 wt %, whereas some aggregates were detected with further increasing filler concentration. Differential scanning calorimetry analysis revealed that the addition Of SiO2 nanoparticles not only remarkably accelerated the crystallization speed but also largely improved the crystallinity of PLA. An initial increase followed by a decrease with higher filler loadings for the storage modulus and glass-transition temperature were observed according to dynamic mechanical analysis results. Hydrogen bonding interaction involving C=O of PLA with Si-OH Of SiO2 was evidenced by Fourier transform infrared analysis for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Blocked isocyanate-functionalized polyolefins have great potential for use in semicrystalline polymer blends to obtain toughened polymers. In this study, poly(butylene terephthalate) (PBT) was blended with allyl N-[2-methyl-4-(2-oxohexahydroazepine-1 -carboxamido)phenyl] carbamate-functionalized poly(ethylene octene) (POE-g-AMPC).RESULTS: New peaks at 2272 and 1720 cm(-1), corresponding to the stretching vibrations of NCO and the carbonyl of NH-CO-N, respectively, in AMPC, appeared in the infrared spectrum of POE-g-AMPC. Both rheological and X-ray photoelectron spectroscopy results indicated a new copolymer was formed in the reactive blends. Compared to uncompatibilized PBT/POE blends, smaller dispersed particle sizes with narrower distribution were found in the compatibilized PBT/POE-g-AMPC blends. There was a marked increase in impact strength by about 10-fold over that of PBT/POE blends with the same rubber content and almost 30-fold higher than that of pure PBT when the POE-g-AMPC content was 25 wt%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A biodegradable amphiphilic block copolymer, PEG-b-P(LA-co-MAC), was used to prepare spherical micelles consisting of a hydrophobic P(LA-co-MAC) core and a hydrophilic PEG shell. To improve their stability, the micelles were crosslinked by radical polymerization of the double bonds in the hydrophobic blocks. The crosslinked micelles had similar sizes and a narrow size distribution compared to their uncrosslinked precursor. The improved stability of the crosslinked micelles was confirmed by measurements of the CMC and a thermodynamic investigation. These micelles can internalize into Hela cells in vitro as demonstrated by inverted fluorescence microscopy and CLSM. These stabilized nanoscale micelles have potential use in biomedical applications such as drug delivery and disease diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A functionalized. cyclic carbonate monomer containing a cinnamate moiety, 5-methyl-5-cinnamoyloxymethyl-1,3-dioxan-2-one (MC), was prepared for the first time with 1,1,1-tri(hydroxymethyl) ethane as a starting material. Subsequent polymerization of the new cyclic carbonate and its copolymerization with L-lactide (LA) were successfully performed with diethyl zinc (ZnEt2) as initiator/catalyst. NMR was used for microstructure identification of the obtained monomer and copolymers. Differential scanning calorimetry (DSC) was used to characterize the functionalized poly(ester-carbonate). The results indicated that the copolymers displayed a single glass transition temperature (T-g) and the T, decreased with increasing carbonate content and followed the Fox equation, indicative of a random microstructure of the copolymer. The photo-crosslinking of the cinnamate-carrying copolymer was also demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SiO2-CaO-P2O5 gel bioglass (BG) nanoparticles with the diameter of 40 nm were synthesized by sol-gel approach. The surface of BG nanoparticles was grafted through the ring-open polymerization of the L-lactide to yield poly (L-lactide) (PLLA) grafted gel particle (PLLA-g-BG). The PLLA-g-BG was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposites of PLLA-g-BG/PLGA with the various blend ratios of two phases. PLLA-g-BG accounted 10%, 20% and 40% in the composite, respectively. TGA, ESEM and EDX were used to analyze the graft ratio of PLLA-g-BG, the dispersion of nano-particles and the surface elements of the composites respectively. The rabbit osteoblasts were seeded and cultured on the thin films of composites in vitro. The cell adhesion, spreading and growth of osteoblasts were analyzed with FITC staining, NIH Image J software and MTT assay. The change of cell cycle was monitored by flow cytometry (FCM). The results demonstrated that the Surface modification of BG with PLLA could significantly improve the dispersing of the particles in the matrix of PLGA. The nanocomposite with 20% PLLA-g-BG exhibited superior surface properties, including roughness and plenty of silicon, calcium and phosper, to enhance the adhesion, spreading and proliferation of osteoblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioactive SiO2-CaO-P2O5 gel (BAG) nanoparticles with 40 nm in diameter were synthesized by the sol-gel route and further modified via the ring-opening polymerization of lactide on the surface of particles. Surface modified BAG (mBAG) was introduced in poly(L-lactide) (PLLA) matrix as bioactive filler. The dispersibility of mBAG in PLLA matrix was much higher than that of rough BAG particles. Tensile strength of the mBAG/PLLA composite could be increased to 61.2 MPa at 2 wt% filler content from 53.4 MPa for pure PLLA. The variation of moduli of the BAG/PLLA and mBAG/PLLA composites always showed an enhancement tendency with the increasing content of filler loading. The SEM photographs of the fracture surfaces showed that mBAG could be homogeneously dispersed in the PLLA matrix, and the corrugated deformation could absorb the rupture energy effectively during the breaking of materials. In vitro bioactivity tests showed that both BAG and mBAG particles could endow the composites with ability of the calcium sediment in SBF, but the surface modification of BAG particles could weaken this capability to some extent. Biocompatibility tests showed that both BAG and mBAG particles could facilitate the attachment and proliferation of the marrow cells on the surface of the composite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL), a saturated polyester, derived from ring-opening polymerization of epsilon-caprolactone, was chemically crosslinked with various amounts of benzoyl peroxide (BPO) by a two-step method by first evenly dispersing the BPO into the PCL matrix and then crosslinking at elevated temperature. The gel fraction increased with an increase in BPO content. The modified Charlesby-Pinner equation was used to calculate the ratio of chain scission and crosslinking. The results showed that both scission and crosslinking occurred, and that crosslinking predominated over scission. The number-average molecular weight between the crosslinks determined by the rubber elasticity theory using the hot set test showed a decrease with increasing BPO content. The melting temperature and crystallinity decreased with an increase in BPO content, and the crystallization temperature increased after crosslinking. Dynamic mechanical analysis results showed a decrease in the glass transition temperature as a result of chemical crosslinking of PCL. This was explained by the observed reduction in crystallinity and the increase in free volume due to restrictions in chain packing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two novel bis(amine anhydride)s, NN-bis(3,4-dicarboxyphenyl)aniline dianhydride (I) and N,N-bis(3,4-dicarboxyphenyl)-p-tert-butylaniline (II), were synthesized from the palladium-catalyzed amination reaction of N-methyl-protected 4-chlorophthalic anhydride with arylamines, followed by alkaline hydrolysis of the intermediate bis(amine-phthalimide)s and subsequent dehydration of the resulting tetraacids. The X-ray structures of anhydride I and II were determined. The obtained dianhydride monomers were reacted with various aromatic diamines to produce a series of novel polyimides. Because of the incorporation of bulky, propeller-shaped triphenylamine units along the polymer backbone, all polyimides exhibited good solubility in many aprotic solvents while maintaining their high thermal properties. These polymers had glass transition temperatures in the range of 298-408 degrees C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 525 degrees C in nitrogen.The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 95-164 MPa, 8.8-15.7%, and 1.3-2.2 GPa, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel path of preparing PP/o-MMT nanocomposites, which pay attention to the breaking up of MMT original agglomerates and dispersing of its primary particles, rather than the intercalation or exfoliation degree of o-MMT, was reported. The method of predispersing the o-MMT particles into a polar poly(vinyl alcohol) (PVA) matrix and then melt blending the pre-treated PVA/o-MMT hybrids with PP was studied. 3-isopropenyl-alpha,alpha-dimethylbenzene-isocyanate (TMI) was used as a modifier of PVA to improve the compatibility between PVA and PP matrix. Pre-disperse o-MMT with TMI modified PVA was proved to be an effective way to get a composite with fine o-MMT particles dispersion. But the method, which is pre-dispersing o-MMT with non modified PVA and then using TMI to modify such PVA/o-MMT hybrid, would largely reduce the reaction degree between TMI and PVA because of the relatively lower reaction temperature. Although the latter method also can obtain finer dispersion composites than that with using PP-g-MAH as compatibilizer, the relatively higher degradation degree of PP matrix in this method will limit the use of this nanocomposite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dewetting evolution process of polymethyl methacrylate (PMMA) film on the flat and prepatterned polydimethylsiloxane (PDMS) substrates (with square microwells) by the saturated solvent of methyl ethyl ketone (MEK) treatment has been investigated at room temperature by the optical microscope (OM) and atomic force microscope (AFM). The final dewetting on the flat PDMS substrate led to polygonal liquid droplets, similar to that by temperature annealing. However, on the patterned PDMS substrate, depending on the microwells' structure of PDMS substrate and defect positions that initiated the rupture and dewetting of PMMA, two different kinds of dewetting phenomena, one initiated around the edge of the microwells and another initiated outside the microwells, were observed. The forming mechanism of these two different dewetting phenomena has been discussed. The microwells were filled with liquid droplets of PMMA after dewetting due to the formation of fingers caused by the pinning of the three-phase-line at the edge of the microwells and their rupture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite fibers composed of poly(L-lactide)-grafted hydroxyapatite (PLA-g-HAP) nanoparticles and polylactide (PLA) matrix were prepared by electro-spinning. Environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the composite fibers and the distribution of PLA-g-HAP nanoparticles in the fibers, respectively. At a low content (similar to 4 wt%) of PLA-g-HAP, the nanoparticles dispersed uniformly in the fibers and the composite fibrous mats exhibited higher strength properties, compared with the pristine PLA fiber mats and the simple hydroxyapatite/PLA blend fiber mats. But when the content of PLA-g-HAP further increased, the nanoparticles began to aggregate, which resulted in the deterioration of the mechanical properties of the composite fiber mats. The degradation behaviors of the composite fiber mats were closely related to the content of PLA-g-HAP. At a low PLA-g-HAP content, degradation may be delayed due to the reduction of autocatalytic degradation of PLA. When PLA-g-HAP content was high, degradation rate increased because of the enhanced wettability of the composite fibers and the escape of the nanoparticles from fiber surfaces during incubation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel biodegradable aliphatic poly(L-lactide-co-carbonate) bearing pendant acetylene groups was successfully prepared by ring-opening copolymerization of L-lactide (LA) with 5-methyl-5-propargyloxycarbonyl-1,3-dioxan-2-one (PC) in the presence of benzyl alcohol as initiator with ZnEt2 as catalyst in bulk at 100 degrees C and subsequently used for grafting 2-azidoethyl beta-D-glucopyranoside and 2-azidoethyl beta-lactoside by the typical "click reaction," that is Cu(I)-catalyzed cycloaddition of azide and alkyne. The density of acetylene groups in the copolymer can be tailored by the molar ratio of PC to LA during the copolymerization. The aliphatic copolymers grafted with sugars showed low cytotoxicity to L929 cells, improved hydrophilic properties and specific recognition and binding ability with lectins, that is Concanavalin A (Con A) and Ricinus communis agglutinin (RCA). Therefore, this kind of sugar-grafted copolymer could be a good candidate in variety of biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To improve the mechanical properties of the composites of poly(lactide-co-glycolide) (PLGA, LA/GA = 80/20) and the carbonate hydroxyapatite (CHAP) particles, the rice-form or claviform CHAP particles with 30-40 nm in diameter and 100-200 nm in length were prepared by precipitation method. The uncalcined CHAP particles have a coarse surface with a lot of global protuberances, which could be in favor of the interaction of the matrix polymer to the CHAP particles. The nanocomposites of PLGA and surface grafted CHAP particles (g-CHAP) were prepared by solution mixing method. The structure and properties of the composites were subsequently investigated by the emission scanning electron microscopy, the tensile strength testing, and the cell culture. When the contents of g-CHAP were in the range of 2-15 wt %, the PLGA/g-CHAP nanocomposites exhibited an improved elongation at break and tensile strength. At the 2 wt % content of g-CHAP, the fracture strain was increased to 20%) from 4-5% for neat PLGA samples. Especially at g-CHAP content of 15 wt %, the tensile strength of PLGA/g-CHAP composite was about 20% higher than that of neat PLGA materials. The tensile moduli of composites were increased with the increasing of filler contents, so that the g-CHAP particles had both reinforcing and toughening effects on the PLGA composites. The results of biocompatibility test showed that the higher g-CHAP contents in PLGA composite facilitated the adhesion and proliferation properties of osteoblasts on the PLGA/g-CHAP composite film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polymer pair composed of poly( N-isopropylacrylamide-co-2-hydroxyethyl methacrylate terminated oligo( L-lactide)) ( poly( NIPAAm-co-HEMAOLLA)) graft random copolymer and poly( D-lactide) ( PDLA) homopolymer was self-assembled into micelles with a diameter around 100 nm through the stereocomplexation between the OLLA branches of the graft copolymer and the PDLA homopolymer. The specific intermolecular stereocomplexation was considered as the powerful ordered aggregation force in the micelle cores. The shell's component of poly( NIPAAm-co-HEMA) and its thermosensitivity were proved by H-1 nuclear magnetic resonance ( NMR) and dynamic light scattering ( DLS), respectively. The incorporation of PDLA homopolymer into the graft copolymer affected the micelle size and the critical micelle concentration ( CMC). The incorporation of even a small quantity ( 11 wt%) of PDLA into the graft copolymer micelles resulted in a great decrease of the micelle size. For the graft copolymer with low per cent grafting of 18%, the size of the corresponding micelles decreased slightly even if the PDLA content increased up to 33 wt%. For the graft copolymer with high per cent grafting of 58%, with the further increase of PDLA content, the size of the corresponding micelles at first decreased further and then began to increase. The molecular weight of the PDLA did not significantly affect the micelle size.