328 resultados para PHOTON
Resumo:
The quantum well (QW) semiconductor lasers have become main optical sources for optical fibre communication systems because of their higher modulation speed, broader modulation bandwidth and better temperature characteristics. In order to improve the quality of direct-modulation by means of the stochastic resonance (SR) mechanism in QW semiconductor lasers, we investigate the behaviour of the SR in direct-modulated QW semiconductor laser systems. Considering the cross-correlated carrier noise and photon noise, we calculate the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated laser system by using the linear approximation method. The results indicate that the SR always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity.
Resumo:
Quantum dissipation and broadening mechanisms in Si-doped InGaN quantum dots are studied via the photoluminescence technique. It is found that the dissipative thermal bath that embeds the quantum dots plays an important role in the photon emission processes. Observed spontaneous emission spectra are modeled with the multimode Brownian oscillator model achieving an excellent agreement between experiment and theory for a wide temperature range. The dimensionless Huang-Rhys factor characterizing the strength of electron-LO-phonon coupling and damping constant accounting for the LO-phonon-bath interaction strength are found to be similar to 0.2 and 200 cm(-1), respectively, for the InGaN QDs. (c) 2006 American Institute of Physics.
Resumo:
The ground and excited state excitonic transitions of stacked InAs self-organized quantum dots (QDs) in a laser diode structure are studied. The interband absorption transitions of QDs are investigated by non-destructive PV spectra, indicating that the strongest absorption is related to the excited states with a high density and coincides with the photon energy of lasing emission. The temperature and excitation (electric injection) intensity dependences of photoluminescence and electroluminescence indicate the influence of state filling effect on the luminescence of threefold stacked QDs. The results indicate that different coupling channels exist between electronic states in both vertical and lateral directions.
Resumo:
Considering that the coupling among the heavy-hole exciton, light-hole exciton and the cavity photon can form bipolaritons in a quantum semiconductor microcavity, we calculate the group velocities of the cavity polaritons at different incident angles using the coupling model of three harmonic oscillators. The result indicates that the group velocities of the low and middle branches of the cavity polaritons have extrema, but the group velocities of the high branch increase with the increasing incident angle.
Resumo:
Based on an idea that spatial separation of charge states can enhance quantum coherence, we propose a scheme for a quantum computation with the quantum bit (qubit) constructed from two coupled quantum dots. Quantum information is stored in the electron-hole pair state with the electron and hole located in different dots, which enables the qubit state to be very long-lived. Universal quantum gates involving any pair of qubits are realized by coupling the quantum dots through the cavity photon which is a hopeful candidate for the transfer of long-range information. The operation analysis is carried out by estimating the gate time versus the decoherence time.
Resumo:
Absolute measurement of detector quantum efficiency using optical parametric down-conversion has been extensively studied for the case of a continuous wave pump. In this paper, we have used the temporally and spatially correlated properties of the down-converted photon pairs generated in a nonlinear crystal pumped by a femtosecond laser pulse to perform an absolute measurement of detector quantum efficiency. The measured detector quantum efficiency is in excellent agreement with the measured value in the conventional way. A lens with a long focal length was adopted for efficiently increasing the intensity of the down-conversion entangled photon source.
Resumo:
We report on the theoretical study of the interaction of the quantum dot (QD) exciton with the photon waveguide models in a semiconductor microcavity. The InAs/GaAs self-assembled QD exciton energies are calculated in a microcavity. The calculated results reveal that the electromagnetic field reduces the exciton energies in a semiconductor microcavity. The effect of the electromagnetic field decreases as the radius of the QD increases. Our calculated results are useful for designing and fabricating photoelectron devices.
Resumo:
Micro-Raman measurements were carried out to investigate the microstructure of amorphous silicon-nitrogen alloy (a-SiNx:H) samples with different N contents prepared by plasma enhanced chemical vapor deposition (PECVD). Resonant Raman effect was discovered by using 647.1- and 514.5-nm excitation wavelengths. The frequency of TO mode downshifts with increasing photon energy without varying its width, while LO mode expands to a great extent. The frequency-dependent shift of TO band is explained by heterogeneous structure model and quantum confinement model, and the width expansion of LO mode may be related to the overlapping of LA and LO bands. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We demonstrate that the carrier capture and relaxation processes in InAs/GaAs quantum dots can be detected by a simple degenerate pump-probe technique. We have observed a rising process in the transient reflectivity, following the initial fast relaxation in a GaAs matrix, and assigned this rising process to the carrier capture from the GaAs barriers to the InAs layers. The assignment was modeled using the Kramers-Kronig relations. The capture time was found to depend strongly on the InAs layer thickness as well as on the excitation density and photon energy. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel AC driving configuration is proposed for biased semiconductor superlattices, in which the THz driving is provided by an intense bichromatic cw laser in the visible light range. The frequency difference between two components of the laser is resonant with the Bloch oscillation. Thus, multi-photon processes mediated by the conduction (valence) band states lead to dynamical delocalization and localization of the valence (conduction) electrons, and to the formation and collapse of quasi-minibands. Thus, driven Bloch oscillators are predicted to generate persistent THz emission and harmonics of the dipole field, which are tolerant of the exciton and the relaxation effects.
Resumo:
Nanocrystalline silicon embedded SiO2 matrix is formed by annealing the SiO2 films fabricated by plasma enhanced chemical vapor deposition technique. In conjunction with the micro-Ramam spectra, the absorption spectra of the films have been investigated. The blue-shift of absorption edge with decreasing size of silicon crystallites is due to quantum confinement effect. It is found that nanocrystalline silicon is of an indirect band structure, and that the absorption presents an exponential dependance absorption coefficient on photon energy ii! the range of 2.0-3.0 eV, and a sub-band appears in the the range of 1.0-1.5 eV. We believe that the exponential absorption is due to the indirect band-to-band transition of electrons in silicon nanocrystallites, while the Sub-band absorption is ascribed to transitions between the amorphous silicon states existing in the films.
Resumo:
Nanocrystalline silicon embedded SiO2 matrix has been formed by annealing the a-SiOx films fabricated by plasma enhanced chemical vapor deposition technique. Absorption and photoluminescence spectra of, the films have been studied in conjunction with micro-Raman scattering spectra. It is found that absorption presents an exponential dependence of absorption coefficient to photon energy in the range of 1.5-3.0 eV, and a sub-band appears in the range of 1.0-1.5 eV. The exponential absorption is due to the indirect band-to-band transition of electrons in silicon nanocrystallites, while the sub-band absorption is ascribed to transitions between surfaces and/or defect states of the silicon nanocrystallites. The existence of Stokes shift between absorption and photoluminescence suggests that the phonon-assisted luminescence would he enhanced due to the quantum confinement effects.
Resumo:
The photo- and thermo-stimulated luminescence (PSL and TSL) of BaFCl0.8Br0.2:Sm2+,Sm3+ phosphors were investigated. It is found that the stimulated luminescence intensity of Sm2+ is almost equal to that of Sm3+ even if the content of Sm2+ is much lower than that of Sm3+. Only the stimulated luminescence of Sm2+ is observed in the sample in which the content of Sm2+ is much higher than Sm3+, demonstrating that the PSL or TSL efficiency of Sm2+ is much higher than that of Sm3+. This is attributed to the effective overlap of the e-h emission with the absorption of Sm2+ centers which may make the energy transfer from the electron-hole pairs to Sm2+ effectively. In BaFCl0.8Br0.2:Sm2+,Sm3+ the stimulated luminescence is considered to be occurred via the recombination of photoreleased electrons with the [Sm2+ + h] or [Sm3+ + h] complex and the energy transfer from the electron-hole pairs to the luminescence centers (Sm2+ and Sm3+) is concerned to be the major step to determine the stimulated luminescence efficiency. The X-ray-induced stimulated luminescence is compared and connected to the photon gated hole burning. The net result of the two processes is quite similar and may be comparable. It is suggested from the observations of stimulated luminescence that electron migration between Sm2+ and Sm3+ is not the major process, color centers may play an important role in hole burning. The information from stimulated luminescence is helpful for the understanding of the hole burning mechanism. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The electronic structure of crystalline Y2O3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom-and orbital-resolved partial DOS. effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Gamma is obtained which increases with pressure at a rate of dE(g)/dP = 0.012 eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y2O3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of epsilon(O)= 3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Gamma between the top of the valence band and the bottom of the conduction band may be symmetry forbidden.
Resumo:
Whispering gallery modes (WGMs) in microcavities possess ultra-high cavity Q factor. Such microcavity are easy to be fabricated, so WGMs have attracted much attention in the area of photonics and integrated photonic circuits. It is well known that the effect of total internal reflection restricts the size of this mirocavity. Such drawback goes against the integration of photon. However, the photonic crystal microcavities (PCMC) make a breakthrough recently. The WGMs in the PCMC are possible to gain both ultra-high Q and ultra-small mode volume. In this paper, the property of the mode in photonic crystal ring cavity is analyzed by FDTD and PWE. By modifying the airholes in the corners of the ring cavity, we can obtain the WGM. Also the Q factor of WGM in photonic crystal ring cavity is calculated. This favors the design of the photonic crystal microcavity components.