268 resultados para Membrane Computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oxygen permeable membrane based on Ba0.5Sr0.5Co0.8-Fe0.2O3-delta is used to supply lattice oxide continuously for oxidative dehydrogenation of ethane to ethylene with selectivity as high as 90% at 650degreesC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconium-doped perovskite-type membrane materials of BaCo0.4Fe0.6-xZrxO3-delta (x = 0-0.4) with mixed oxygen ion and electron conductivity were synthesized through a method of combining citric and EDTA acid complexes. The results of X-ray diffraction (XRD), oxygen temperature-programmed desorption (O-2-TPD) and hydrogen temperature-programmed reduction (H-2-TPR) showed that the incorporation of proper amount of zirconium into BaCo0.4Fe0.6O3-delta could stabilize the ideal and cubic structure of perovskite. Studies on the oxygen permeability of the as-synthesized membrane disks under air/He gradient indicated that the content of zirconium in these materials had great effects on oxygen permeation flux, activation energy for oxygen permeation and operation stability. The high oxygen permeation flux of 0.90 ml cm(-2) min(-1) at 950degreesC, the single activation energy for oxygen permeation in the range of 600-950 degreesC and the long-term operation stability at a relatively lower operational temperature of 800 degreesC under air/He gradient were achieved for the BaCo0.4Fe0.4Zr0.2O3-delta material. Meanwhile, the effect of carbon dioxide on structural stability and oxygen permeability of this material was also studied in detail, which revealed that the reversible stability could be attained for it. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel and ideal dense catalytic membrane reactor for the reaction of partial oxidation of methane to syngas (POM) was constructed from the stable mixed conducting perovskite material of BaCo0.4Fe0.4Zr0.2O3-delta and the catalyst of LiLaNiO/gamma-Al2O3. The POM reaction was performed successfully. Not only was a short induction period of 2 h obtained, but also a high catalytic performance of 96-98% CH4 conversion, 98-99% CO selectivity and an oxygen permeation flux of 5.4-5.8 ml cm(-2) min(-1) (1.9-2.) mumol m(-2) S-1 Pa-1) at 850 degreesC were achieved. Moreover, the reaction has been steadily carried out for more than 2200 h, and no interaction between the membrane material and the catalyst took place.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A NaA zeolite membrane was synthesized on the surface of the stainless steel stab. The membrane was characterized by XRD and SEM. The membrane was continuous and highly intergrown. The size of NaA zeolite crystals was about 5 similar to 6 mum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of NaA zeolite membrane on a porous alpha -Al2O3 support by microwave heating (MH) was investigated. The formation of a NaA zeolite membrane was drastically promoted by MH. The synthesis time was reduced from 3 h for conventional heating (CH) to 15 min for MH. Surface seeding cannot only promote the formation of NaA zeolite on the support, but also inhibit the transformation of NaA zeolite into other types of zeolites. The thickness of the NaA zeolite membrane synthesized by MH was about 4 mum, thinner than that of NaA zeolite membrane synthesized by CH. The permeance of NaA zeolite membrane synthesized by MH was four times higher than that of the NaA zeolite membrane synthesized by CH, while their permselectivities were comparable. Multi-stage synthesis resulted in the transformation of NaA zeolite into other types of zeolites, and the perfection of the as-synthesized membrane decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of NaA zeolite membrane on a porous alpha -Al2O3 support from clear solution and the evaluation of the perfection of the as-synthesized membrane by gas permeation were investigated. When an unseeded support was used, the NaA zeolite began to transform into other types of zeolites before a continuous NaA zeolite membrane formed. When the support was coated with nucleation seeds, not only the formation of NaA zeolite on the support surface was accelerated, but also the transformation of NaA zeolite into other types of zeolites was inhibited. A continuous NaA zeolite membrane can be formed. Perfection evaluation indicated that the NaA zeolite membrane with the synthesis time of 3 h showed the best perfection after a one-stage synthesis. The perfection of NaA zeolite membrane can be improved by employing the multi-stage synthesis method. The NaA zeolite membrane with a synthesis time of 2 h after a two-stage synthesis showed the best gas permeation performance, The permselectivity of H-2/n-C4H10 and O-2/N-2 were 19.1 and 1.8, respectively, higher than those of the corresponding Knudsen diffusion selectivity of 5.39 and 0.94, which showed the molecular sieving effect of NaA zeolite. However, the permeation of n-C4H10 also indicated that the NaA zeolite membrane had certain defects, the diameter of which were larger than the NaA zeolite channels. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La0.15Sr0.85Ga0.3Fe0.7O3-delta (LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-delta (LSCFO) mixed oxygen-ion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding dense membranes were fabricated. The properties of the oxide powders and membranes were characterized with combined SEM, XRD, H-2-TPR, O-2-TPD techniques, mechanical strength and oxygen permeation measurement. The results showed that LSGFO had much higher thermochemical stability than LSCFO due to the higher valence stability of Ga3+. After the temperature-programmed reduction by 5% H-2 in Ar from 20 degreesC to 1020 degreesC, the basic perovskite structure of LSGFO was successfully preserved. LSGFO also favors the oxygen vacancy formation better than LSCFO. Oxygen permeation measurement demonstrated that LSGFO had higher oxygen permeation flux than LSCFO, but they had similar activation energy for oxygen transportation, with a value of 110 and 117 kJ . mol(-1), respectively The difference in oxygen permeation fluxes was correlated with the difference in oxygen vacancy concentrations for the two materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mixed-conducting perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) ceramic membrane reactor with high oxygen permeability was applied for the activation of methane. The membrane reactor has intrinsic catalytic activities for methane conversion to ethane and ethylene. C-2 selectivity up to 40-70% was achieved, albeit that conversion rate were low, typically 0.5-3.5% at 800-900 degreesC with a 50% helium diluted methane inlet stream at a flow rate of 34 ml/min. Large amount of unreacted molecular oxygen was detected in the eluted gas and the oxygen permeation flux improved only slightly compared with that under non-reactive air/He experiments. The partial oxidation of methane to syngas in a BSCFO membrane reactor was also performed by packing LiLaNiO/gamma -Al2O3 with 10% Ni loading as the catalyst. At the initial stage, oxygen permeation flux, methane conversion and CO selectivity were closely related with the state of the catalyst. Less than 21 h was needed for the oxygen permeation flux to reach its steady state. 98.5% CH4 conversion, 93.0% CO selectivity and 10.45 ml/cm(2) min oxygen permeation flux were achieved under steady state at 850 degreesC. Methane conversion and oxygen permeation flux increased with increasing temperature, No fracture of the membrane reactor was observed during syngas production. However, H-2-TPR investigation demonstrated that the BSCFO was unstable under reducing atmosphere, yet the material was found to have excellent phase reversibility. A membrane reactor made from BSCFO was successfully operated for the POM reaction at 875 degreesC for more than 500h without failure, with a stable oxygen permeation flux of about 11.5 ml/cm(2) min. (C) 2001 Elsevier Science B.V. All rights reserved.