265 resultados para Mechanical machining
Resumo:
The Al50W50 alloy bulk bodies were fabricated by using mechanical alloying and hot-pressing in this work. The Al50W50 alloy had excellent thermal stability up to 1300 degreesC under vacuum and Its optimum microhardness, bending strength and compressive strength were 10.21 GPa, 570 MPa and 2.07 GPa, respectively.
Resumo:
Notch Izod impact strength of poly(propylene) (PP)/glass bead blends was studied as a function of temperature. The results indicated that the toughness for various blends could undergo a brittle-ductile transition (BDT) with increasing temperature. The BDT temperature (T-BD) decreased with increasing glass bead content. Introducing the interparticle distance (ID) concept into the study, it was found that the critical interparticle distance (IDc) reduced with increasing test temperature correspondingly. The static tensile tests showed that the Young's modulus of the blends decreased slightly first and thereafter increased with increasing glass bead content. However, the yield stress decreased considerably with the increase in glass bead content. Dynamic mechanical analysis (DMA) measurements revealed that the heat-deflection temperature of the PP could be much improved by the incorporation of glass beads. Moreover, the glass transition temperature (T-g) increased obviously with increasing glass beads content. Differential scanning calorimetry (DSC) results implied that the addition of glass beads could change the crystallinity as well as the melting temperature of the PP slightly.
Resumo:
The mechanical and thermal properties of glass bead-filled nylon-6 were studied by dynamic mechanical analysis (DMA), tensile testing, Izod impact, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) tests. DMA results showed that the incorporation of glass beads could lead to a substantial increase of the glass-transition temperature (T-g) of the blend, indicating that there existed strong interaction between glass beads and the nylon-6 matrix. Results of further calculation revealed that the average interaction between glass beads and the nylon-6 matrix deceased with increasing glass bead content as a result of the coalescence of glass beads. This conclusion was supported by SEM observations. Impact testing revealed that the notch Izod impact strength of nylon-6/glass bead blends substantially decreased with increasing glass bead content. Moreover, static tensile measurements implied that the Young's modulus of the nylon-6/glass bead blends increased considerably, whereas the tensile strength clearly decreased with increasing glass bead content.
Resumo:
High-performance polyimide fibers possess man), excellent properties, e.g., outstanding thermal stability and mechanical properties and excellent radiation resistant and electrical properties. However, the preparation of fibers with good mechanical properties is very difficult. In this report, a biphenvl polyimide from 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline is synthesized in p-chlorophenol by one-step polymerization. The solution is spun into a coagulation bath of water and alcohol via dry-jet wet-spinning technology. Then, the fibers are drawn in two heating tubes. Thermal gravimetric analysis, thermal mechanical analysis, and dynamic mechanical analysis (DMA) are performed to study the properties of the fibers. The results show that the fibers have a good thermal stability at a temperature of more than 400degreesC. The linear coefficient of thermal expansion is negative in the solid state and the glass transition temperature is about 265degreesC. DMA spectra indicate that the tandelta of the fibers has three transition peaks, namely, alpha, beta, and gamma transition. The alpha and gamma transition temperature, corresponding to the end-group motion and glass transition, respectively, extensively depends on the applied frequency, while the beta transition does not.
Resumo:
An aromatic polyimide was synthesized via a one-step polycondensation reaction between biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxydianiline (ODA) in p-chlorophenol. The polyimide (BPDA-ODA) solution dopes were spun into fibers by means of dry-jet wet spinning. The as-spun fibers were drawn and treated in heating tubes for improving the mechanical properties. The thermal treatment on the fibers resulted in a relatively high tensile strength and modulus. Thermal mechanical analysis (TMA) was employed to study the linear coefficient of thermal expansion (CTE). Thermal gravimetry analysis (TGA) spectra showed that the BPDA-ODA fibers possessed an excellent property of thermo-oxidative degradation resistance. The sonic modulus E-s of the polyimide fibers was measured.
Resumo:
Blends of poly(ether-sulfone) (PES) and poly(phenylene sulfide) (PPS) with various compositions were prepared using an internal mixer at 290degreesC and 50 rpm for 10 min. The thermal and dynamic mechanical properties of PES/PPS blends have been investigated by means of DSC and DMA. The blends showed two glass transition temperatures corresponding to PPS-rich and PES-rich phases. Both of them decreased obviously for the blends with PES matrix. On the other hand, T-g of PPS and PES phase decreased a little when PPS is the continuous phase. In the blends quenched from molten state the cold crystallization temperature of PPS was detected in the blends of PES/PPS with mass ratio 50/50 and 60/40. The melting point, crystallization temperature and the crystallinity of blended PPS were nearly unaffected when the mass ratio of PES was less than 60%, however, when the amount of PES is over 60% in the blends, the crystallization of PPS chains was hindered. The thermal and the dynamic mechanical properties of the PPS/PES blends were mainly controlled by the continued phase.
Resumo:
To simulate the deformation and the fracture of gradual multi-fiber-reinforced matrix composites, a numerical simulation method for the mesoscopic mechanical behaviors was developed on the basis of the finite element and the Monte Carlo methods. The results indicate that the strength of a composite increases if the variability of statistical fiber strengths is decreased.
Resumo:
A bulk Ti45Zr35Ni17Cu3 alloy, which consisted of the icosahedral quasicrystalline phase, was prepared by mechanical alloying(MA) and subsequent pulse discharge sintering. Ti45Zr35Ni17Cu3 amorphous powders (with particle size < 50 mu m) were obtained after mechanical alloying for more than 150 h from the mixture of the elemental powder. The transformation temperature range from amorphous phase to the quasicrystalline phase was from 400 K to 900 K. The mechanical properties of the bulk quasicrystalline alloy have been examined at room temperature. The Vickers hardness and compressive fracture strength were 620 +/- 40 and 1030 +/- 60 MPa, respectively. The bulk quasicrystalline alloy exhibited the elastic deformation by the compressive test. The fracture mode was brittle cleavage fracture.
Resumo:
Poly(ethylene-co-propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR-graft-GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR-graft-GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR-graft-GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR-graft-GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR-graft-GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR-graft-GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR-graft-GMA1.3 blend (1.3 indicates degree of grafting).
Resumo:
A series of acrylonitrile-butadiene-styrene (ABS) with different rubber content were prepared by diluting ABS grafting copolymer containing 60% rubber with a styrene-acrylonitrile copolymer. ABS prepared were blended with bisphenol-A-polycarbonate (PC) at the ratio of 70/30, 50/50, and 30/70 to prepare PC/ABS blends. Influence of rubber content in ABS on the properties of ABS and PC/ABS blends were investigated. PC/ABS blends with different compositions got good toughness when the rubber in ABS increased to the level that ABS itself got good toughness. The tensile properties and processability of PC/ABS blends decreased with the increase of the total rubber content introduced into the blends. ABS with the rubber content of 30 wt% is most suitable to be used to prepare PC/ABS blends. The rubber content in ABS affected the viscosity of ABS, and subsequently the viscosity ratio of PC to ABS. As a result, the morphology of PC/ABS blends varied. The increase of rubber content in ABS results in finer structure of PC/ABS blends.
Resumo:
The blends of low molecular weight triacetin (TAC) and oligomeric poly(1,3-butylene glycol adipate) (PBGA) were used as multiple plasticizers to lubricate poly(lactic acid) (PLA) in this study. The thermal and mechanical properties of plasticized polymers were investigated by means of dynamic mechanical analysis and differential scanning calorimetry. Atomic force microscopy (AFM) was used to analyze the morphologies of the blends. Multiple plasticizers were effective in lowering the glass transition temperature (T-g) and the melting temperature (T-m) of PLA. Moreover, crystallinity of PLA increased with increasing the con-tent of multiple plasticizers. Tensile strength of the blends decreased following the increasing of the plasticizers, but increased in elongation at break. AFM topographic images showed that the multiple plasticizers dispersed between interfibrillar regions. Moreover, the fibrillar crystallite formed the quasicrosslinkings, which is another cause for the increase in elongation at break.
Resumo:
A kind of full-biodegradable film material is discussed in this article. The film material is composed of starch, PVA, degradable polyesters(PHB, PHB-V, PCL) with built plasticizer, a cross-linking reinforcing agent and a wet strengthening agent. It contains a high percentage of starch, costs cheap and is excellent in weather fastness, temperature resistance and waterproof and it could be completely biodegraded. The present paper deals mainly with a new technical route using a new type of electromagnetic dynamic blow molding extruder and some effects on mechanical properties of the system.
Resumo:
Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.
Resumo:
Novel composite resins possessing good luminescent properties have been synthesized through a free radical copolymerization of styrene, alpha-methylacrylic acid and the binary or ternary complexes of lanthanide ions (Eu3+ and Tb3+). These polymer-based composite resins not only possess good transparency and mechanical performance but also exhibit an intense narrow band emission of lanthanide complexes under UV excitation. We characterized the molecular structure, physical and mechanical performance, and luminescent properties of the composite resins. Spectra investigations indicate that alpha-methyl-acrylic acid act as both solubilizer and ligand. Photoluminescence measurements indicate that the lanthanide complexes show superior emission lines and higher intensities in the resin matrix than in the corresponding pure complex powders, which can be attributed to the restriction of molecular motion of complexes by the polymer chain networks and the exclusion of water molecules from the complex. We also found that the luminescence intensity decreased with increasing content of alpha-methylacrylic acid in the copolymer system. The lifetime of the lanthanide complexes also lengthened when they were incorporated in the polymer matrix. In addition, we found that the relationships between emission intensity and Tb (Eu) content exhibit some extent of concentration quenching.