390 resultados para Light Manager


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method of tailoring stimulated Brillouin scattering (SBS) gain spectrum for slow light propagation is proposed by use of two Gaussian-shaped broadband pump beams with different powers and spectral widths. The central frequency interval between the two pump beams are carefully set to be two inherent Brillouin frequency shift, ensuring that the gain spectrum of one pump has the same central frequency with the loss spectrum of the other one. Different gain profiles are obtained and analyzed. Among them a special gain profile is found that ensures a zero-broadening of the signal pulse independent of the Brillouin gain. This is owing to the compensation between the positive gain-dependent broadening and the negative GVD (group velocity dispersion) dependent broadening. The relationship of two pump beams is also found for constructing such a gain profile. It provides us a new idea of managing the broadening of SBS-based slow pulse by artificially constructing and optimizing the profile of gain spectrum. (c) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a grating is recorded in a bacteriorhodopsin film by two linear parallel polarized beams together with anauxiliary violet light, the diffraction efficiency has a dependence on the polarization orientation of the violet light as well as its intensity. A method for calculating the diffraction efficiency of gratings in bacteriorhodopsin is proposed based on the two-state photochromic model, considering the saturation effect and the polarization status of all the involved lights. It is found that the polarization orientation of the violet light produces an approximate-cosine and an approximate-sine modulation on the steady-state diffraction efficiency separately at low and high intensities, respectively. The parallel polarized violet light can improve the steady-state diffraction efficiency to a larger degree than the perpendicularly polarized violet light when both are at their optimal intensities. The optimal intensity for the parallel polarized violet light is lower than that of the perpendicular polarized one. Thus, the improvement of the steady-state diffraction efficiency is less sensitive to the intensity of perpendicular polarized violet light than to that of parallel polarized violet light. (C) 2008 Optical Society of America.