230 resultados para Genetic demography
Resumo:
An optimization method based on uniform design in conjunction with genetic algorithm is described. According to the proposed method, the uniform design technique was applied to the design of starting experiments, which can reduce the number of experiments compared with traditional simultaneous methods, such as simplex. And genetic algorithm was used in optimization procedure, which can improve the rapidity of optimal procedure. The hierarchical chromatographic response function was modified to evaluate the separation equality of a chromatogram. An iterative procedure was adopted to search for the optimal condition to improve the accuracy of predicted retention and the quality of the chromatogram. The optimization procedure was tested in optimization of the chromatographic separation of 11 alkaloids in reversed-phase ion pair chromatography and satisfactory optimal result was obtained. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies
Resumo:
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
Resumo:
To establish a molecular-marker-assisted system of breeding and genetic study for Laminaria japonica Aresch., amplified fragment length polymorphism (AFLP) was used to construct a genetic linkage map of L. japonica featuring 230 progeny of F-2 cross population. Eighteen primer combinations produced 370 polymorphic loci and 215 polymorphic loci segregated in a 3:1 Mendelian segregation ratio (P <= 0.05). Of the 215 segregated loci, 142 were ordered into 27 linkage groups. The length of the linkage groups ranged from 6.7 to 90.3 centimorgans (cM) with an average length of 49.6 cM, and the total length was 1,085.8 cM, which covered 68.4% of the estimated 1,586.9 cM genome. The number of mapped markers on each linkage group ranged from 2 to 12, averaging 5.3 markers per group. The average density of the markers was 1 per 9.4 cM. Based on the marker density and the resolution of the map, the constructed linkage map can satisfy the need for quantitative trait locus (QTL) location and molecular-marker-assisted breeding for Laminaria.
Resumo:
The haploid stage of gametophytes of the subtidal brown alga Undaria pinnatifida can be vegetatively propagated under favorable conditions. This unique characteristic makes it possible to establish independent gametophyte cell lines that are zoospore-derived. Sporophytic offspring can be generated through hybridizing the male and female gametophytes, which are derived from different cell lines. Accumulated experiences in this and other species in Laminariales demonstrated the applicability of this novel way to breed desired strains for open-sea cultivation. Sporophytic offspring originated from mono-crossing of male and female gametophyte clones were shown to have similar morphological characteristics under identical ambient conditions. However, there has been no report to relate this similarity on molecular levels. In this report, amplified fragment length polymorphism (AFLP) and microsatellite markers were used to analyze the genetic identity of sporophytic offspring of U. pinnatifida originated from two mono-crossing lines (M1 and M2), two self-breeding lines (S1 and S2) and one wild population (W). Totally 318 AFLP loci were revealed by use of 11 primer sets, of which 4.7%, 0.3%, 17.9%, 16.4% and 36.5% were polymorphic in M1, M2, S1, S2 and W, respectively. The pairwise genetic identity among the individuals of the same line was assessed. It was shown that offspring from mono-crossing lines had a higher degree of identity (95.6-100%) than self-breeding lines (87.7-98.4%) and the wild population (81.5-92.1%). Analysis by use of six microsatellite loci also revealed a higher genetic identity among individuals of the mono-crossing line, further confirming the results of AFLP analysis. Results from this investigation support, on molecular levels, the novel way to produce and maintain strains in U. pinnatifida by use of different gametophyte cell lines.
Resumo:
Aims: To investigate the species-specific prevalence of vhhP2 among Vibrio harveyi isolates and the applicability of vhhP2 in the specific detection of V. harveyi from crude samples of animal and environmental origins. Methods and Results: A gene (vhhP2) encoding an outer membrane protein of unknown function was identified from a pathogenic V. harveyi isolate. vhhP2 is present in 24 V. harveyi strains isolated from different geographical locations but is absent in 24 strains representing 17 different non-V. harveyi species, including V. parahaemolyticus and V. alginolyticus. A simple polymerase chain reaction method for the identification of V. harveyi was developed based on the conserved sequence of vhhP2. This method was demonstrated to be applicable to the quick detection of V. harveyi from crude animal specimens and environmental samples. The specificity of this method was tested by applying it to the examination of two strains of V. campbellii, which is most closely related to V. harveyi. One of the V. campbellii strains was falsely identified as V. harveyi. Conclusions: vhhP2 is ubiquitously present in the V. harveyi species and is absent in most of the non-V. harveyi species; this feature enables vhhP2 to serve as a genetic marker for the rapid identification of V. harveyi. However, this method can not distinguish some V. campbellii strains from V. harveyi. Significance and Impact of the Study: the significance of our study is the identification of a novel gene of V. harveyi and the development of a simple method for the relatively accurate detection of V. harveyi from animal specimens and environmental samples.
Resumo:
Zhikong scallop (Chlamys farreri Jones et Preston 1904) is one of the most important aquaculture species in China. The development of a genetic linkage map would provide a powerful tool for the genetic improvement of this species. Amplified fragment length polymorphism (AFLP) is a PCR-based technique that has proven to be powerful in genome fingerprinting and mapping, and population analysis. Genetic maps of C. farreri were constructed using AFLP markers and a full-sib family with 60 progeny. A total of 503 segregating AFLP markers were obtained, with 472 following the Mendelian segregation ratio of 1:1 and 31 markers showing significant (P< 0.05) segregation distortion. The male map contained 166 informative AFLP markers in 23 linkage groups covering 2468 cM. The average distance between markers was 14.9 cM. The female genetic map consisted of 198 markers in 25 linkage groups spanning 3130 cM with an average inter-marker spacing of 15.8 cM. DNA polymorphisms that segregated in a 3:1 ratio as well as the AFLP markers that were heterozygous in both parents were included to construct combined linkage genetic map. Five shared linkage groups, ranging from 61.1 to 162.5 cM, were identified between the male and female maps, covering 431 cM. Amplified fragment length polymorphism markers appeared to be evenly distributed within the linkage groups. Although preliminary, these maps provide a starting point for the mapping of the functional genes and quantitative trait loci in C. farreri.