256 resultados para Galoisian cubic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solid solutions of CdYFeWO7, which are cubic pyrochlores of the type A(2)B(2)O(7), have been prepared and their structures were determined using Ab initio method. Rietveld refinement of the powder XRD data showed that CdYFeWO7 adopted cubic (Fd-3m) structure, while oxides crystallized in a defect-pyrochlore structure where both O (48f) and O'(8b) sites were partially occupied, and the frustrated cations sublattice precluded long range ordering of Fe/W in the pyrochlore structure. Charge distribution analysis also suggested incomplete occupation of different oxygen sites, thus the compound was non-stoichiometric, with the formula CdYFeW0.982O6.94, Magnetic measurements were carried out to find that Fe ions were in the high spin trivalent state. Curie Weiss paramagnetism down to similar to 5 K and the characteristic superposition between FC and ZFC suggested spin liquid rather than spin glass state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3, hexagonal P3(2)21, tetragonal P4(2)/mnm, orthorhombic Pmmn, Pnnm, and Pnn2, and monoclinic P2(1)/c. Our calculation indicates that the P2(1)/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414 A. These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P2(1)/c. The calculated bulk modulus of 373 GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357 GPa within 4.3% and of 402 GPa within 7.8%, but smaller than the experimental value of 428 GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2. For IrN3, cubic skutterudite structure (Im-3) was assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure, elastic, and electronic properties of OsN2 at various space groups: cubic Fm-3m, Pa-3, and orthorhombic Pnnm were studied by first-principles calculations based on density functional theory. Our calculation indicates that the structure in orthorhombic Pnnm phase is energetically more stable compared with cubic systems. It is metallic, mechanically stable and contains diatomic N-N units with the bond distance 1.418 A. These characters are consistent with experimental facts that OsN2 is orthorhombic and metallic. The calculated bulk modulus 394 GPa is also the highest among the considered space groups, slightly larger than previous value 358 GPa. The calculated elastic anisotropic factors and directional bulk modulus showed that OsN2 possess high elastic anisotropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 45, and 23 run for the precursor and samples annealed at 600, 700 and 800 degrees C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O-2-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g(-1) at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effect of cerium on the microstructure and electrochemical performance of the Ti0.25V0.35-xCexCr0.1Ni0.3 (x = 0, 0.005) electrode alloy was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectrometry (FESEM-EDS), and electrochemical impedance spectroscopy (EIS) measurements. On the basis of XRD and FESEM-EDS analysis, the alloy was mainly composed of V-based solid solution with body-centered-cubic structure and TiNi-based secondary phase. Ce did not exist in two phases, instead, it existed as Ce-rich small white particles, with irregular edges, distributed near the grain boundaries of the V-based solid solution phase. Discharge capacity, cycle stability, and high-rate discharge ability of the alloy electrode were effectively improved with the addition of Ce at 293 K. It was very surprising that the charge retention was abnormal with larger discharge capacity after standing at the open circuit for 24 h. EIS indicated that addition of Ce improved the dynamic performance, which caused the charge transfer resistance (R-T) to decrease and exchange current density (I-0) to increase markedly. The exchange current density of the electrochemical reaction on the alloy surface with Ce addition was about 2.07 and 3.10 times larger than that of the alloy without Ce at 303 and 343 K, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanowires of SiC were synthesized by carbothermally reducing PVP/TEOS composite fibres obtained by electrospinning. High-resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED) indicated that the SiC nanowires are single crystalline in nature. Both Fourier-transformed infrared spectroscopy and HRTEM indicated that a thin layer of SiO2 was formed on the outer surface of the nanowire as a result of post-heat treatment for the removal of residual carbon. Such SiO2 layer protects the inner SiC fibre from further oxidation. The formation mechanism of single-crystalline SiC nanowires was proposed based on our understanding and characterizations. The growth of the nanowire is believed to be along the ( 111) of its cubic cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing polyvinyl pyrrolidone (PVP) and In(NO3)(3)center dot 4(1)/2H2O. Upon firing the composite fibers at 800 degrees C, In2O3 fibers with diameters ranging from 200 to 400 nm were synthesized. This indium oxide calcined at 800 degrees C is a body-centered cubic cell. The photoluminescence (PL) properties of the as-formed In2O3 nanofibers were investigated. The In2O3 nanofibers show a strong PL emission in the ultraviolet (UV) region under shorter UV light irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)(2), Eu(NO3)(3) and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ D-5(0)-F-7(J) (J = 1-4) transitions, with the magnetic dipole D-5(0)-F-7(1) allowed transition (590 nm) being the most prominent emission line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La0.5Ba0.5MnO3 products with novel flowerlike, microcube, and nanocube structures were successfully synthesized by a simple hydrothermal route by controlling the alkalinity of the reaction solutions. The synthesized products were systematically studied by X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that the formation of the flowerlike structures with a layer assembly experienced a nucleation-aggregation-crystallization growth process, while the cubic structures experienced a nucleation-crystallization growth process due to the effect of different alkalinity in the reaction solutions. The higher alkalinity also led to a decrease in the size in the cubic structures. Suitable temperature and pressure were demonstrated to be crucial to the formation of the flowerlike structures by carrying out further control experiments. The measurement of the magnetic properties of three samples obtained at different alkaline conditions indicated that the size of the La0.5Ba0.5MnO3 products had an obvious influence on their properties; however, the dependence of the properties upon the morphology of the La0.5Ba0.5MnO3 products was minor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, compositional dependence of age hardening response and tensile properties were investigated for Mg-10G(d-x)Y-0.4Zr (x = 1, 3, 5 wt.%) alloys. With increasing Y content, the age hardening response of the alloys enhanced and tensile properties increased. The Mg-10Gd-5Y-0.4Zr alloy exhibited maximum tensile strength and yield strength at aged-peak hardness, and the values were 302 MPa and 289 MPa at room temperature, and 340 MPa and 267 MPa at 250 degrees C, respectively. The strong peak age hardening was attributed to the precipitation of prismatic beta' plates in a triangular arrangement. The cubic shaped beta phase was also observed at grain boundaries. The remarkable improvement in strength is associated with a uniform and high dense distribution of beta' and cubic shaped beta precipitate phases in Mg matrix. Elongation of Mg-10Gd-0.4Zr alloys decreased with increasing Y content, and the elongation of Mg-10Gd-5Y-0.4Zr alloy was less than 3% below 250 degrees C, whereas the alloys containing I wt.% and 3 wt.% Y exhibited higher elongation than 5% at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid solutions of Ce1-xNdxO2-x/2 (0.05 <= x <= 0.2) and (Ce1-xNdx)(0.95)MO0.05O2-delta (0.05 <= x <= 0.2) have been synthesized by a modified sol-gel method. Both materials have very low content of SiO2 (similar to 27 ppm). Their structures and ionic conductivities were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and electrochemical impedance spectroscopy (M). The XRD patterns indicate that these materials are single phases with a cubic fluorite structure. The powders calcined at 300 degrees C with a crystal size of 5.7 nm have good sinterability, and the relative density could reach above 96% after being sintered at 1450 degrees C. With the addition Of MoO3, the sintering temperature could be decreased to 1250 degrees C. Impedance spectroscopy measurement in the temperature range of 250-800 degrees C indicates that a sharp increase of conductivity is observed when a small amount of Nd2O3 is added into ceria, of which Ce0.85Nd0.15O1.925 (15NDC) shows the highest conductivity. With the addition of a small amount Of MoO3, the grain boundary conductivity of 15NDC at 600 degrees C increases from 2.56 S m(-1) to 5.62 S m(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd2O3: EU3+ phosphors were prepared by urea homogeneous precipitation with different surfactant and sol-gel method. XRD patterns show that all the obtained samples are in cubic Gd2O3, and the results of FTIR and fluorescent spectra conformed that OP is a good surfactant for preparing the Gd2O3: Eu3+ phosphors. The SEM photographs show that the particles prepared by urea homogeneous precipitation method are all spherical and well-dispersed, and grain morphology can be controlled by different surfactant. XRD and SEM indicate that the particle sizes prepared by sol-gel method are in the range of 5 similar to 30 nm, and the grain sizes increase with increasing of heated temperatures. Luminescence spectra indication that the main emission peaks of all samples are at 610 nm, the intensities are different from samples prepared with different surfactant and the luminescence intensities increase with increasing of annealed temperatures.