351 resultados para Fluorescence spectrum
Resumo:
A capillary array electrophoresis system with rotary corifocal fluorescence scanner was reported. High speed direct current rotary motor combined with a rotary encoder and the reflection mirror has been designed to direct exactly the excitation laser beam. to the array of capillaries, which are symmetrically distributed around the motor. The rotary encoder is introduced to accurately orient the position of each capillary and its output signal triggers the data acquiring system to record. the fluorescence signal corresponding to each capillary. Separations of several amino acids are demonstrated by eight-channel capillary array electrophoresis built by ourselves.
Resumo:
Mutation of hMLH1 gene plays an important role in human tumorigenesis. A highly sensitive single-strand conformation polymorphism (SSCP) method for detection of the T1151A mutation in exon 12 of the hMLH1 gene was for the first time developed employing laser-induced fluorescence capillary electrophoresis (LIF-CE). Effects of the concentration of linear polyacrylamide solution, running temperature, running voltage and the addition of glycerol on SSCP analysis were investigated, and the optimum separation conditions were defined. Thirty colorectal cancer patients and eight lung cancer patients were screened and the T1151A mutation was found in four of them. Based on CE-sequencing the mutation was further confirmed. To our knowledge, this is for the first time that the T1151A mutation is found in lung cancer. Our method is simple, rapid, and highly sensitive and is well suited to the analysis of large numbers of clinical samples.
Resumo:
The development of a method for determining arsenic species by capillary zone electrophoresis (CZE) with indirect laser-induced fluorescence (LIF) is described in this paper. The buffer pH, the concentration of fluorescein, the nature and the concentration of the background electrolytes (BGEs) were defined. When 2.0 mM NaHCO3 (pH 9.28) with 10(-7) M fluorescein was used as the buffer, arsenite (As(lll), dimethylarsonic acid (DMA), monomethylarsonic acid (MMA), and arsenate (As(V)) were all separated from one another. The limits of detection for the four arsenic species were p p in the range of 0.12-0.54 mg/L. This method was used in the analysis of spiked arsenic species in tap and mineral water to demonstrate its usefulness. The results showed that both the recovery and the reproducibility of the developed method were acceptable.
Resumo:
By attaching a bulky, inductively electron-with drawing trifluoromethyl (CF3) group on the pyridyl ring of the rigid 2-[3(N-phenylcarbazolyl)]pyridine cyclometalated ligand, we successfully synthesized a new heteroleptic orange-emitting phosphorescent iridium(III) complex [Ir(L-1)(2)(acac)] 1 (HL1=5-trifluoromethyl-2-[3-(N-phenylcarbazolyl)]pyridine, Hacac = acetylacetone) in good yield.
Resumo:
We functionalize the focal group of hyperbranched poly(phenylene sulfide) (HPPS) with benzyl, phenyl, and naphthyl group, respectively. DSC analysis shows that T-g of HPPS is increased from 55 to 93 degrees C by functionalization of the focal group with a conjugated naphthyl group. The fluorescence properties of the three core-functionalized HPPS' are studied under the comparison with the original HPPS.
Resumo:
Based on the dimer-monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF(4)) instead of PBS was applied as running buffers in microchip electrophoresis.
Resumo:
The binding-site number was calculated by using fluorescence spectroscopic method with bovine serum albumin(BSA) and Indo-1 as protein and ligand models, respectively. The method for calculating binding-site number in BSA for Indo-1 was developed based on the relationships between the changes of Indo-1 fluorescence intensity and the analytical concentration of BSA. And the interaction of BSA with Indo-1 was investigated comprehensively by using fluorescence techniques as well as fluorescence resonance energy transfer, and the thermodynamic parameters were calculated according to the changes of enthalpy on temperature.,
Resumo:
In this paper, we report a facile method for the fabrication of type-I collagen-silver nanoparticles (Ag NPs) multilayered films by utilizing type-I collagen as a medium. These samples were characterized by UV-vis spectra photometer, atomic force microscopy, scanning electron microscopy, and Fourier transform IR spectrum. Experimental results show that collagen molecules serve as effective templates to assemble Ag NPs into multilayer films. These samples exhibit high surface-enhanced Raman scattering (SERS) enhancement abilities.
Resumo:
The quantum yield, lifetime, and absorption spectrum of four [Ru(bpy)(2)L](+) [where bpy is 2,2'-bipyridyl; L is represented by the deprotonated form of 2-(1H-tetrazol-5-yl)pyridine (L1) or 2-(1H-tetrazol-5-yl)pyrazine (L2)], as well as their methylated complexes [Ru(bpy)(2)LMe](2+) (RuL1Me and RuL2Me) are closely ligand dependent. In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) were performed to compare the above properties among these complexes. The calculated results reveal that the replacement of pyridine by pyrazine or the attachment of a CH3 group to the tetrazolate ring greatly increases the pi-accepting ability of the ancillary ligands.
Resumo:
An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6'-phosphatehexyl)fluorene-alt-1,4-phenylene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer.
Resumo:
Herein, a sensitive and selective sensor for biothiols based on the recovered fluorescence of the CdTe quantum dots (QDs)-Hg(II) system is reported. Fluorescence of QDs could be quenched greatly by Hg(II). In the presence of biothiols, such as glutathione (GSH), homocysteine (Hcy), and cysteine (Cys), however, Hg(H) preferred to react with them to form the Hg(II)-S bond because of the strong affinity with the thiols of biothiols rather than quenching the fluorescence of the QDs. Thus, the fluorescence of CdTe QDs was recovered. The restoration ability followed the order GSH > Hcy > Cys due to the decreased steric hindrance effect. A good linear relationship was obtained from 0.6 to 20.0 mu mol L-1 for GSH and from 2.0 to 20.0 mu mol L-1 for Cys, respectively. The detection limits of GSH and Cys were 0.1 and 0.6 mu mol L-1, respectively. In addition, the method showed a high selectivity for Cys among the other 19 amino acids. Furthermore, it succeeded in detecting biothiols in the Hela cell.