320 resultados para Doping concentration
Resumo:
The dissociation behaviors of propane hydrate by high concentration alcohols inhibitors injection were investigated. Methanol (30.0, 60.1, 80.2, and 99.5 wt %) and ethylene glycol (30.0, 60.1, 69.8, 80.2, and 99.5 wt %) solution were injected, respectively, as alcohols inhibitors in 3.5 L transparent reactor. It is shown that the average dissociation rates of propane hydrate injecting methanol and ethylene glycol solution are 0.02059-0.04535 and 0.0302-0.0606 mol.min(-1).L-1, respectively. The average dissociation rates increase with the mass concentration increase of alcohols solution, and it is the biggest when 99.5 wt % ethylene glycol solution was injected. The presence of alcohols accelerates gas hydrate dissociation and reduces the total need of external energy to dissociate the hydrates. Density differences act as driving force, causing the acceleration effects of ethylene glycol on dissociation behaviors of propane hydrate are better than that of methanol with the same injecting flux and mass concentration.
Resumo:
Starting from the modeling of isolated ions and ion-clusters, a closed form rate and power evolution equations for high-concentration erbium-doped fiber amplifiers are constructed. Based on the equations, the effects of the fraction of ion-clusters in total ions and the number of ions per cluster on the performance of high-concentration erbium-doped fiber amplifiers are analyzed numerically. The results show that the presence of the ion-clusters deteriorates amplifier performance, such as the signal power, signal gain, the threshold pump power for zero gain, saturated signal gain, and the maximum gain efficiency, etc. The optimum fiber length or other parameters should be modified with the ion-clusters being taken into account for the amplifiers to achieve a better performance. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Al-doped and B, Al co-doped SiO2 xerogels with Eu2+ ions were prepared only by sol-gel reaction in air without reducing heat-treatment or post-doping. The luminescence characteristics and mechanism of europium doping SiO2 xerogels were studied as a function of the concentration of Al, B, the europium concentration and the host composition. The emission spectra of the Al-doped and B, Al codoped samples all show an efficient emission broad band in the blue violet range. The blue emission of the Al-doped sample was centered at 437 nm, whereas the B, Al co-doped xerogel emission maximum shifted to 423 nm and the intensity became weaker. Concentration quenching effect occurred in both the Al-doped and B, Al co-doped samples, which probably is the result of the transfer of the excitation energy from Eu2+ ions to defects. The highest Eu2+ emission intensity was observed for samples with the Si(OC2H5)(4):C2H5OH:H2O molar ratio of 1:2:4. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A novel heavy-metal chalcogenide glass doped with a high dysprosium ion (Dy(3+)) concentration was prepared by the well-established melt-quenching technique from high-purity elements. The results show that when Cadmium (Cd) is introduced into chalcogenide glass, the concentration of Dy(3+) ions doped in GeGaCdS glasses is markedly increased, the thermodynamic performance improves, and the difference between T(g) and T(x) is >120 degrees C. The Vickers microhardness is also modified greatly, about 245 kgf/mm(2). The optical spectra indicate that all absorption and emission bands of Dy(3+) are clearly observed and red-shifted with increasing Dy(3+) concentration.
Resumo:
Using deep level transient spectroscopy (DLTS) the conduction-subband energy levels in a V-shaped potential well induced by Si-delta doping in GaAs were determined. Self-consistent calculation gives four subbands in the well below the Fermi level. Experimentally, two DLTS peaks due to electron emission from these subbands were observed. Another two subbands with low electron concentration are believed to be merged into the adjacent DLTS peak. A good agreement between self-consistent calculation and experiment was obtained. (C) 1994 American Institute of Physics.
Resumo:
We report fundamental changes of the radiative recombination in a wide range of n-type and p-type GaAs after diffusion with the group-I element Li. These optical properties are found to be a bulk property and closely related to the electrical conductivity of the samples. In the Li-doped samples the radiative recombination is characterized by emissions with excitation-dependent peak positions which shift to lower energies with increasing degree of compensation and concentration of Li. These properties are shown to be in qualitative agreement with fluctuations of the electrostatic potential in strongly compensated systems. For Li-diffusion temperatures above 700-800-degrees-C semi-insulating conditions with electrical resistivity exceeding 10(7) OMEGA cm are obtained for all conducting starting materials. In this heavy Li-doping regime, the simple model of fluctuating potentials is shown to be inadequate for explaining the. experimental observations unless the number of charged impurities is reduced through complexing with Li. For samples doped with low concentrations of Li, on the other hand, the photoluminescence properties are found to be characteristic of impurity-related emissions.
Resumo:
A theoretical description of chloride vapour-phase epitaxy (CVPE) has been proposed which contains two-dimensional (2D) gas-dynamic equations for transport of reactive components and kinetic equations for surface growth processes connected by nonlinear adiabatic boundary conditions. No one of these stages is supposed to be the limiting one. Calculated variations of growth rate and impurity concentrations along the growing layer fit experimental data well.
Resumo:
We report lithium passivation of the shallow acceptors Zn and Cd in p-type GaAs which we attribute to the formation of neutral Li-Zn and Li-Cd complexes. Similar to hydrogen, another group-I element, lithium strongly reduces the concentration of free holes when introduced into p-type GaAs. The passivation is inferred from an increase of both the hole mobility and the resisitivity throughout the bulk of the sample. It is observed most clearly for Li concentrations comparable to the shallow-acceptor concentration. In addition, compensation of shallow acceptors by randomly distributed donors is present in varying degree in the Li-diffused samples. Unlike hydrogenation of n-type GaAs, Li doping shows no evidence of neutralizing shallow donors in GaAs.
Resumo:
We have studied the photovoltaic effects in Si doping superlattices (nipi) under different excitation conditions with and without additional cw optical biasing using a He-Ne laser. On the basis of the photovoltaic theory of carrier spatial separation in superlattices, we propose the concept of spatial fixity of the photovoltage polarity in type-II superlattices and examine the experimental results. The photovoltaic effect in Si nipi is found mainly from the direct transitions related with shallow impurities in real space, not the electron-hole band-to-band process as in GaAs nipi.
Resumo:
Metalorganic vapor-phase epitaxial growth of GaAs doped with isovalent Sb is reported. By increasing the trimethylantimony concentration during growth the total Sb concentration was varied between 1 X 10(17)-1 X 10(19) cm-3. A new deep level defect with an activation energy of the thermal emission rates of E(c) - 0.54 eV is observed. The defect concentration increases with increasing As partial pressure and with increasing Sb doping. It is also found that the EL2 concentration decreases with increasing Sb doping. The new energy level is suggested to be the 0/ + transition of the Sb(Ga) heteroantisite defect. No photocapacitance quenching effect, reflecting a metastable state as seen for EL2 (As(Ga)), is observed for Sb(Ga).