199 resultados para Cladding of laser glass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel laser resonator for compensating depolarization loss that is due to thermally induced birefringence in active rod is reported. As this new structure being applied to an electro-optic Q-switched LIDA side-pumped Nd:YAG laser operating at a repetition rate of 1000 Hz, substantial reduction in depolarization loss has been observed, the output pulse energy is improved about 56% from that of a traditional resonator without compensation structure. With incident pump energy of 450 mJ per pulse, linearly polarized output energy of 30 mJ per pulse is achieved, the pulse duration is less than 15 ns, and the peak power of pulse is about 2 MW. The extinction ratio of laser beam is better than 10:1, and the beam divergence is 1.3 mrad with beam diameter of around 2.5 mm. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed a highly efficient diode side-pumped Nd:YAG ceramic laser with a diffusive reflector as an optical pump cavity. A maximum output power of 211.6W was obtained with an optical -to- optical conversion efficiency of 48.7%. This corresponds to the highest conversion efficiency in the side-pumped ceramic rod. Thermal effects of the Nd:YAG ceramic rod were analyzed in detail through the measurements of laser output powers and beam profiles near the critically unstable region. A M-2 beam quality factor of 18.7 was obtained at the maximum laser output power. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

氟磷酸盐玻璃系统南于其特殊的光学性能和优良的机做与热学性能一直是特种光学玻璃材料领域的一个研究热点。总结了氟磷酸盐玻璃的分类及玻璃组分与其结构的关系,综述了氟磷玻璃在光学器件、高能高功率激光玻璃、光纤激光器、光纤放大器及上转换发光基质材料等领域上的应用,并对其未来的发展进行了展望。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在氟铝酸盐玻璃组分中加入适量声子能量低的重金属氧化物TeO2,得到一种新的氧氟化物玻璃。该材料具有良好的成玻璃性能,适合制作大尺寸红外窗口镜。研究了TeO2含量对玻璃特征温度、阿贝数和红外透过性能的影响。同时测试了这种玻璃的抗DF激光能力,结果表明:TeO2含量为15%的玻璃,DF激光破坏阈值达14.95kW·cm^-2。分析显示,由于玻璃基质的多声子吸收,对激光能量的吸收而引起的热冲击是导致玻璃破坏的主要原因。进一步降低玻璃中水分,可以提高玻璃抗激光破坏性能。