198 resultados para Achnanthes cf. longipes
Resumo:
In this study, 172 mollusk assemblages from the Weinan loess section in the southeast of Loess Plateau, China, were identified quantitatively at relative high resolution. The results show: 1) the history and processes of paleoclimatic and paleoenvironmental changes in Weinan since the last 70 ka; 2) the characteristics of climatic changes during the period of the last glacial maximum (LGM); 3) the spatial pattern of paleoclimate variations at the south and middle parts of the Loess Plateau during the LGM period; 4) the timing of the last deglaciation and the return event of rapid climate change during the last deglaciation. The main conclusions are as follows: 1) 172 mollusk samples taken from the uppermost 9 m deposits cover the past 70 ka, which were sampled at the internals of 5 cm for S_0, 3 cm for L_(1-1) and L_(1-2), and 10 cm for L_(1-3), L_(1-4) and L_(1-5). Author analyzed quantitatively all individuals including broken pieces of snail shells, percentages of 15 species identified from 172 samples. Three main groups were determined according to the ecological requirement of each taxon. Based on the variations of three ecological groups and typical ecological species, The author intended to reconstruct the history of and processes of climate and environment since the last 70 ka in the Weinan region. The climate and environment in this region experienced the following changes: relative warm and humid stage from 67.5-20.3 cal. ka B.P., a period of forest-steppe or steppe developed; cold and arid stage from 20.3-15.5 cal. ka B.P., a dry steppe period, later wetter and colder; cold and humid period once time from 15.5 to 12.3 cal. ka B.P., a typical steppe or forest-steppe stage; cold and humid again from 12.3 cal. ka B.P. to 8.2 cal. ka B.P., a tropical steppe stage; warm and humid climate, a forest-steppe developed. 2) The climate during the period of the last glacial maximum (LGM) in Weinan was characterized by a general cold-humid condition, represented by occurrence of a number of the cool-humidiphilous mollusk species such as Gastocopta amigerella and Vallonia cf. pulchella in the section. 3) Comparison of the variations in abundance of Puncture orphana at Weinan with those at Luochuan and Changwu sections suggests that the summer monsoon intensity influenced differently at the three regions during the LGM period. The Weinan was weaker summer monsoon impact during all the period, the Luochuan was influenced occasionally, and Changwu was only a very short time affected, which indicated it might be located at the western margin of the summer monsoon influence during that period. 4) The ratio of thermo-humidiphilous mollusk group to cold-aridiphilous one shows an increase tendency at about 15 cal. ka B.P., reflecting the climate warming after the deglaciation in Weinan, which is approximately corresponding to the timing of warming period of the last deglaciation, found in the East Atlantic Ocean, the South China Sea and the Loess Plateau (indicated by the phytolith study). 5) A remarkable decrease in the number of thermo-humidiphilous and cool-humidiphilous mollusk species from 12.7 - 11.6 cal. ka B.P. indicates a cooling in climate and might be the reflection of the Younger Dryas event in Weinan. 6) Variations in the ratios of thermo-humidiphilous mollusk species to cold-aridiphilous ones reflect the climate instability in Holocene. There were four warm-humid periods (10-8.1 cal. ka B.P., 6.9-6.1 cal. ka B.P., 5.2-2.6cal. ka B.P., 1.6cal. ka B.P. to the present ) and three relative cold-arid periods (8.1-6.9 cal. ka B.P., 6.1-5.2 cal. ka B.P., 2.6-1.6 cal. ka B.P.), showing about a 1,000 year climatic oscillation.
Resumo:
As a typical geological and environmental hazard, landslide has been causing more and more property and life losses. However, to predict its accurate occurring time is very difficult or even impossible due to landslide's complex nature. It has been realized that it is not a good solution to spend a lot of money to treat with and prevent landslide. The research trend is to study landslide's spatial distribution and predict its potential hazard zone under certain region and certain conditions. GIS(Geographical Information System) is a power tools for data management, spatial analysis based on reasonable spatial models and visualization. It is new and potential study field to do landslide hazard analysis and prediction based on GIS. This paper systematically studies the theory and methods for GIS based landslide hazard analysis. On the basis of project "Mountainous hazard study-landslide and debris flows" supported by Chinese Academy of Sciences and the former study foundation, this paper carries out model research, application, verification and model result analysis. The occurrence of landslide has its triggering factors. Landslide has its special landform and topographical feature which can be identify from field work and remote sensing image (aerial photo). Historical record of landslide is the key to predict the future behaviors of landslide. These are bases for landslide spatial data base construction. Based on the plenty of literatures reviews, the concept framework of model integration and unit combinations is formed. Two types of model, CF multiple regression model and landslide stability and hydrological distribution coupled model are bought forward. CF multiple regression model comes form statistics and possibility theory based on data. Data itself contains the uncertainty and random nature of landslide hazard, so it can be seen as a good method to study and understand landslide's complex feature and mechanics. CF multiple regression model integrates CF (landslide Certainty Factor) and multiple regression prediction model. CF can easily treat with the problems of data quantifying and combination of heteroecious data types. The combination of CF can assist to determine key landslide triggering factors which are then inputted into multiple regression model. CF regression model can provide better prediction results than traditional model. The process of landslide can be described and modeled by suitable physical and mechanical model. Landslide stability and hydrological distribution coupled model is such a physical deterministic model that can be easily used for landslide hazard analysis and prediction. It couples the general limit equilibrium method and hydrological distribution model based on DEM, and can be used as a effective approach to predict the occurrence of landslide under different precipitation conditions as well as landslide mechanics research. It can not only explain pre-existed landslides, but also predict the potential hazard region with environmental conditions changes. Finally, this paper carries out landslide hazard analysis and prediction in Yunnan Xiaojiang watershed, including landslide hazard sensitivity analysis and regression prediction model based on selected key factors, determining the relationship between landslide occurrence possibility and triggering factors. The result of landslide hazard analysis and prediction by coupled model is discussed in details. On the basis of model verification and validation, the modeling results are showing high accuracy and good applying potential in landslide research.
Resumo:
A model is developed for predicting the resolution of interested component pair and calculating the optimum temperature programming condition in the comprehensive two-dimensional gas chromatography (GC x GC). Based on at least three isothermal runs, retention times and the peak widths at half-height on both dimensions are predicted for any kind of linear temperature-programmed run on the first dimension and isothermal runs on the second dimension. The calculation of the optimum temperature programming condition is based on the prediction of the resolution of "difficult-to-separate components" in a given mixture. The resolution of all the neighboring peaks on the first dimension is obtained by the predicted retention time and peak width on the first dimension, the resolution on the second dimension is calculated only for the adjacent components with un-enough resolution on the first dimension and eluted within a same modulation period on the second dimension. The optimum temperature programming condition is acquired when the resolutions of all components of interest by GC x GC separation meet the analytical requirement and the analysis time is the shortest. The validity of the model has been proven by using it to predict and optimize GC x GC temperature programming condition of an alkylpyridine mixture. (c) 2005 Elsevier B.V. All rights reserved.