218 resultados para 4-TRIMETHYLPENTYL PHOSPHINIC ACID
Resumo:
A series of thermotropic liquid crystalline copolyesters were synthesized by thermal polycondensation of p-hydroxybenzoic acid, terephthalic acid, bis (4-hydroxyphenyl) methanone and diols. The resulting copolyesters were characterized by WAXD,DSC and PLM. All the copolyesters formed a nematic phase.
Resumo:
Rare earth complexes of m-nitrobenzoic acid (LnL3.2H2O, Ln = La-Lu and Y, except Pm, HL = m-nitrobenzoic acid) were synthesized and characterized by elemental analysis, chemical analysis, IR spectroscopy and X-ray diffraction analysis. The dehydration beh
Resumo:
The surface chemical species of surface-modified activated carbons and adsorption of 12-silicotungstic acid (SiW12) on them were studied It was found that these carbons have different adsorption isotherms and adsorptive force. The carbonyl groups on the s
Resumo:
In this paper the electrochemical properties of isopolymolybdic anion thin film modified carbon fibre (CF) microelectrode prepared by simple dip coating have been described. The modified electrode shows three couples of surface redox waves between + 0.70 and - 0.1 V vs. sce in 2 M H2SO4 solution with good stability and reversibility. The pH of solution has a marked effect on the electrochemical behaviour and stability of the film, the stronger the acidity of electrolyte solution is, the better the stability and reversibility of isopolymolybdic anion film CF microelectrode will be. The scanning potential range strongly influences on the electrochemical behaviour of the film. The isopolymolybdic anion film prepared by the dip coating resulting a monolayer with estimated surface concentration (F) 2.8 x 10(-11) mol cm-2. From the half-peak widths and peak areas of the surface redox waves of the film electrode, the first three surface waves are corresponding to two-electron processes. The electron energy spectra show the products by six electrons reduction are a mixture of Mo(VI) and Mo(V) species. The electrochemical reaction of the isopolymolybdic anion monolayer can be expressed as Mo8O264- + mH+ + 2ne half arrow right over half arrow left [HmMo8-2n(VI)Mo2n(V)O26](4,2n-m)-n = 1, 2, 3; m = 2, 5, 7.
Resumo:
The crystal structure of erbium (III) complex of benzene acetic acid is reported. The complex crystallizes in the monoclinic space group P2(1)/a with a = 0,9008(3)nm, b=1.4242(5) nm, c=1.8437(7) nm, beta=98.80(3)degrees, V = 2.337(1) nm(3), Z = 4. The mechanism of thermal decomposition of complex has been studied by TG-DTG-DTA. The activation energy for dehydration reaction has been calculated by Freeman Carroll method. The enthalpy change for dehydration and phase change process has been determined.
Resumo:
A conducting polyaniline (PAn) film modified glassy carbon (GC) electrode was prepared by electrochemical polymerization. The electrochemical behavior of ascorbic acid (AH(2)) in aqueous solution at this PAn modified electrode was studied in detail. The experimental results show that PAn film modified electrode has good electrocatalytic activity on the oxidation of ascorbic acid in aqueous solution over a wide range of pH value, among which pH 4 is the optimum condition. The oxidation process of ascorbic acid at PAn film electrode can be regarded as an EC catalytic mechanism. The kinetic process of the catalytic reaction was investigated by rotating disk electrode (RDE) coated with PAn films. The rate constant of the catalytic reaction was evaluated. The catalytic peak currents are proportional to the concentrations tions of ascorbic acid in the range of 5 x 10(-2)-1 x 10(-6) mol . L-1. The PAn film elec trodes give very stable responce for the oxidation of ascorbic acid. The present investigation shows the posibility of using PAn film modified electrode for the determination of ascorbic acid.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, a novel multidomain C-type lectin gene from scallop Chlamys farreri (designated as Cflec-4) was cloned by RACE approach based on EST analysis. The full-length cDNA of Cflec-4 was of 2086 bp. The open reading frame was of 1830 bp and encoded a polypeptide of 609 amino acids, including a signal sequence and four dissimilar carbohydrate-recognition domains (CRDs). The deduced amino acid sequence of CflecA shared high similarities to other C-type lectin family members. The phylogenetic analysis revealed the divergence between the three N-terminal CRDs and the C-terminal one, suggesting that the four CRDs in Cflec-4 originated by repeated duplication of different primordial CRD. The potential tertiary structure of each CRD in Cflec-4 was typical double-loop structure with Ca2+-binding site 2 in the long loop region and two conserved disulfide bridges at the bases of the loops. The tissue distribution of Cflec-4 mRNA was examined by fluorescent quantitative real-time PCR. In the healthy scallops, the Cflec-4 transcripts could be only detected in gonad and hepatopancreas, whereas in the Listonella anguillarum challenged scallops, it could be also detected in hemocytes. These results collectively suggested that CflecA was involved in the immune defense of scallop against pathogen infection and provided new insight into the evolution of C-type lectin superfamily. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid-modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well-defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single-stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the Specific sequence related to the target bar gene with the dynamic range comprised between 1.0 X 10(-7) mol/L to 1.0 x 10(-4) mol/L. A detection limit of 2.25 x.10(-8) mol/L. of oligonucleotides can be estimated.
Resumo:
Growth hormone (GH), prolactin (PRL) and somatolactin (SL) were purified simultaneously under alkaline condition (pH 9.0) from pituitary glands of sea perch (Lateolabrax japonicas) by a two-step procedure involving gel filtration on Sephadex G-100 and reverse-phase high-performance liquid chromatography (rpHPLC). At each step of purification, fractions were monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by immunoblotting with chum salmon GH. PRL and SL antisera. The yields of sea perch GH, PRL and SL were 4.2, 1.0 and 0.28 mg/g wet tissue, respectively. The molecular weights of 19,200 and 20,370 Da were estimated by SDS-PAGE for sea perch GH and PRL, respectively. Two forms of sea perch SL were found: one (28,400 Da) is probably glycosylated, while the other one (23,200 Da) is believed to be deglycosylated. GH bioactivity was examined by an in vivo assay. Intraperitoneal injection of sea perch GH at a dose of 0.01 and 0.1 mug/g body weight at 7-day intervals resulted in a significant increase in body weight and length of juvenile rainbow trout. The complete sea-perch GH amino acid sequence of 187 residues was determined by sequencing fragments cleaved by chemicals and enzymes. Alignment of sea-perch GH with those of other fish GHs revealed that sea-perch GH is most similar to advanced marine fish, such as tuna, gilthead sea bream, yellowfin porgy, red sea bream, bonito and yellow tail with 98.4, 96.2%, 95.7%, 95.2%, 94.1% and 91% sequence identity, respectively. Sea-perch GH has low identity to Atlantic cod (76.5%), hardtail (73.3%), flounder (68.4%), chum salmon (66.3%), carp (54%) and blue shark (38%). Partial amino-acid sequences of 127 of sea-perch PRL and the N-terminal of 16 amino-acid sequence of sea-perch SL have been determined. The data show that sea-perch PRL has a slightly higher sequence identity with tilapia PRL( 73.2%) than with chum salmon PRL(70%) in this 127 amino-acid sequence. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A new sesquiterpene-substituted benzoic acid has been isolated from the brown Alga Dictyopteris divaricata Okam.. Its structure was elucidated as 3-[(2-hydroxy-2,5,5,8a-tetramethyldecahydro-1-naphthalenyl)methyl]-4-hydroxybenzoic acid, named dictyvaric acid on the basis of spectroscopic methods including IR, HRFABMS, 1D and 2D NMR techniques.
Resumo:
The substitution of dietary docosahexaenoic acid (DHA) with eicosapentaenoic acid (EPA) reduces larval growth in gilthead sea bream. However, the value of EPA when dietary DHA is able to meet the requirements of the larvae has not been sufficiently studied. Dietary phosphoacylgliceride levels also affect fish growth and it has been suggested that they enhance lipid transport in developing larvae. The present experiment was carried out to further study the effect of dietary lecithin and eicosapentaenoic acid on growth, survival, stress resistance,. larval fatty acid composition and lipid transport, when DHA is present in the microdiets of gilthead:sea bream. Eighteen thousand gilt-head sea bream larvae of 4.99+/-0.53 mm total length were fed three microdiets tested by triplicate: a control diet [2% soybean lecithin (SBL) and 2.89% EPA], a low EPA diet,(2% SBL and 1.63% EPA) and a no SBL diet (0% SBL and 2.71% EPA). Handling, temperature and salinity tests determined larval resistance to stress. The results show that when dietary DHA levels are high, but dietary arachidonic acid (ARA) levels are about 0.2%, EPA is necessary to improve larval growth, and survival. Larval EPA content, but not DHA or ARA, was affected by dietary EPA levels. Increased dietary EPA improved larval stress resistance to handling and temperature tests, which could be related to its possible role as a regulator of cortisol production whereas it did not affect stress resistance after salinity shock. Larvae fed the no SBL diet showed a lower lipid content characterized by a low proportion of saturated and monounsaturated fatty acids, together with a significant reduction in the appearance of lipoprotein particles in the lamina propria and in the size of such particles, denoting a critical reduction in dietary lipid transport and utilization, and lower larval growth and survival rates.
Resumo:
Chitosan (CS) with two different molecular weights was modified by reacting with 4-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride or 2-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride to give new 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-di-sulfanimide)-chitosan (2-HCBSAHCS, 2-HCBSALCS, 4-HCBSAHCS, 4-HCBSALCS). The structure of the derivatives was characterized by FT-IR and C-13 NMR spectroscopy. The antioxidant activities of the derivatives were investigated employing various established systems, such as hydroxyl radical ((OH)-O-center dot)/superoxide anion (O-2(radical anion)) scavenging/reducing power and chelating activity. All the derivatives showed stronger scavenging activity on hydroxyl radical than chitosan and ascorbic acid (Vc), and IC50 of 4-HCBSAHCS, 4-HCBSALCS, 2-HCBSAHCS and 2-HCBSALCS was 0.334, 0.302, 0.442, 0.346 mg/mL, respectively. The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were strong. The results showed that the superoxide radical scavenging effect of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan was higher than chitosan. The derivatives had obviously reducing power and slight chelating activity. The data obtained in in vitro models clearly establish the antioxidant potency of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The inhibiting effect and mechanism of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylicacid(ciprofloxacin), 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid (norfloxacin) and (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7 H-pyrido(1,2,3-de)-1,4-benzoxazine-6 carboxylic acid (ofloxacin) on the corrosion of mild steel in 1 mol/L HCl have been studied using electrochemical method, quantum chemical method and SEM at 303 K. The potentiodynamic results showed that these compounds suppressed both cathodic and anodic processes of mild steel corrosion in 1 mol/L HCl. The impedance spectroscopy showed that R-p values increased, and C-dl values decreased with the rising of the working concentration. Quantum chemical calculation showed that there was a positive correlation between some inhibitors structure properties and the inhibitory efficiency. The inhibitors function through adsorption followed Langmuir isotherm, and chemisorption made more contribution to the adsorption of the inhibitors on the steel surface compared with physical adsorption. SEM analysis suggested that the metal had been protected from aggressive corrosion because of the addition of the inhibitors.