293 resultados para 332.236
Resumo:
描述了硫酸铵溶液中铀矿坑水样品中铀的电沉积层特性。电沉积液为10ml0.8M的硫酸铵溶液,电流密度0.6A/cm2,pH值为2.5,电镀1h。电沉积经化学分离后的水样品和电沉积的纯硝酸铀酰样品进行了比较,并对二者分别做了红外(IR)光谱、扫描电镜(SEM)、元素分析以及α能谱测量。IR谱上铀酰离子的反对称伸缩振动峰在887cm-1附近,使电沉积在不锈钢片上的铀主要以铀酰离子水合物的形式存在,有一部分NH4+以NH3的形式替代水合物中的水,使电沉积层中铀的化合物形式为UO2(OH)2.xNH3.yH2O或者UO2(OH)2-x.(ONH4)x.yH2O,铀酰离子通过链的形式形成聚合结构。SEM照片显示电沉积层均匀,没堆积成团现象出现。α谱表明电沉积层中铀的同位素主要是238U和234U,相应的α能量峰4198和4773keV很显著,没其它峰的干扰。
Resumo:
简述了植物组织培养方法与离子束辐射相结合这一新诱变技术的研究进展,从原理、操作步骤、分子机理等诸方面对该方法进行了阐释。该诱变技术具备传统辐射诱变技术所不具备的优势,从而能够为利用无性繁殖技术进行后代繁衍的植物提供新的育种思路。与此同时,使用该方法还能够开展植物组织细胞的传能线密度(Linear energy transfer,LET)生物学效应的研究,从理论上及实践上进一步优化该技术。
Resumo:
本试验利用电子辐照PVA/CMC共混水凝胶,通过外观透明度、凝胶分数、溶胀度和红外光谱分析,研究了样品中结构的变化与外观透明度、凝胶分数和溶胀度的关系,以及辐照剂量对样品中结构和性能的影响。结果表明,不同比例的PVA与相同比例的CMC组成的共混水凝胶,经电子辐照后呈现不同的宏观特性。辐照样品萃取后得到的凝胶比萃取前的混合凝胶拥有更强的吸水性,表明辐照PVA/CMC共混凝胶形成了网状结构凝胶。几种竞争反应导致不同辐照剂量下混合凝胶中凝胶含量随PVA含量的变化变得复杂。辐照后样品的红外光谱分析显示,辐照使凝胶中部分仲醇中C上链接的H原子被取代而转变为叔醇,从而产生交联。
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
在兰州的重离子加速器上用 2 6Mg离子束轰击 2 43 Am靶 ,产生了新同位素 2 65Bh .通过观测新同位素 2 65Bh和它的已知子核 2 61Db和 2 57Lr之间的α衰变的关联 ,实现了对新核素的鉴别 .实验中使用了一套新建立的具有数个探测器对的转轮收集探测系统 .将该系统用于特殊的母 -子核搜索模式 ,从而大大减少了本底 .共测得了 8个 2 65Bh的α衰变关联事件 ;同时 4个已知核 2 64Bh的衰变关联事件也被鉴别出来 .实验测得 2 65Bh的α衰变能量为 (9.2 4± 0 .0 5 )MeV ,半衰期为 0 .94 + 0 .70-0 .3 1s .
Resumo:
IEECAS SKLLQG
Resumo:
利用Skyrme有效相互作用对自旋极化的同位旋对称核物质和中子物质的特性进行了研究 .用 4种核子 -核子相互作用参数SⅢ ,SKM ,SLy2 30a和SLy2 30b ,分别描绘了核物质状态方程曲线 .可以发现不论使用哪一种参数 ,在自旋极化的同位旋对称核物质和中子物质中都存在着磁化相变转换点 .另外还对磁化系数进行了计算 ,给出了磁化系数比率随密度的变化关系 ,由于无限不连续点的存在 ,进一步肯定了在Skyrme Hartree Fock理论框架内两种物质会出现磁化相变转换点
Resumo:
介绍了由晶体管化的光电倍增管偏置电路的研究 ,该电路具有功耗低、稳定可靠、输出脉冲上升时间快、能量分辨高、脉冲线性好、恢复时间快等优点。
Resumo:
ZnO films doped with different contents of indium were prepared by radio frequency sputtering technique. The structural, optical and emission properties of the films were characterized at room temperature using XRD, XPS, UV-vis-NIR and PL techniques. Results showed that the indium was successfully incorporated into the c-axis preferred orientated ZnO films, and the In-doped ZnO films are of over 80% optical transparency in the visible range. Furthermore, a double peak of blue-violet emission with a constant energy interval (similar to 0.17 eV) was observed in the PL spectra of the samples with area ratio of indium chips to the Zn target larger than 2.0%. The blue peak comes from the electron transition from the Zn-i level to the top of the valence band and the violet peak from the In-Zn donor level to the V-Zn level, respectively.