212 resultados para 11-108


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pre-column derivatization method for the sensitive determination of amines using a labeling reagent 2-(11H-benzo[a]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) followed by high-performance, liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by LC/APCI/MS in positive-ion mode. The chromophore of 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) reagent was replaced by 2-(11H-benzo[a]-carbazol-11-yl) ethyl functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEC-Cl. BCEC-Cl could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+ H](+) under APCI/MS in positive-ion mode. The collision-induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 261.8 and m/z 243.8 corresponding to the cleavages of CH2O-CO and CH2-OCO bonds. Studies on derivatization demonstrated excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% were observed with three- to four-fold molar reagent excess. In addition, the detection responses for BCEC-derivatives were compared to those obtained using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) and 9-fluorenyl methylchloroformate, (FMOC-Cl) as labeling reagents. The ratios I-BCEC/I-BCEOC = 1.94-2.17 and I-BCEC/I-FMOC = 1.04-2.19 for fluorescent (FL) responses (here, I was relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits calculated from 0.50 pmol injection, at a signal-to-noise ratio of 3, were 1.77-14.4 fmol. The relative standard deviations for within-day determination (n = 11) were 1.84-2.89% for the tested amines. The mean intra- and inter-assay precision for all amines levels were < 3.64% and 2.52%, respectively. The mean recoveries ranged from 96.6% to 107.1% with their standard deviations in the range of 0.8-2.7. Excellent linear responses were observed with coefficients of > 0.9996. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on seawater carbon isotope in the Mesoproterozoic and Neoproterozoic is abundant. However, the sulfur isotopic age curve of seawater sulfates determined through the analysis of sulfur isotopic composition of marine evaporite is uncertain in the Mesoproterozoic and Neoproterozoic since evaporites are generally rare in Precambrian. The Mesoproterozoic and Neoproterozoic Carbonate Formations preserve not only the carbon isotopic records, but also the sulfur isotopic records of coeval seawater in the Huabei Platform and the Yangtze Platform, China. Sulfur isotopic composition can be determined by the extraction of trace sulfate from carbonate samples. Successive measurements of sulfur and carbon isotopic compositions of carbonate samples from the Mesoproterozoic and Neoproterozoic strata in the Huabei Platform and the Yangtze Platform was accomplished through the extracting of trace sulfate from carbonates. Sulfur and carbon isotopic compositions of coeval seawater were obtained from analytical results of sulfur and carbon isotopes of the same sample without diagenetic alteration. The high-resolution age curve of sulfur isotope given in this paper may reflect the trend of variations in sulfur isotope composition of seawater sulfates during the Mesoproterozoic and Neoproterozoic. It can be correlated with the characteristics of variation in age curve of carbon isotope of coeval seawater carbonates. The δ34S values of seawater varied from +10.3-37.0‰ during the Mesoproterozoic, which took on oscillated variation on the whole. The δ34S values took on high values in the Mesoproterozoic Chuanlinggou stage, Tuanshanzi stage Tieling stage and in Neoproterozoic Jing'eryu stage. The average of those was about +30‰. The sulfates have low δ34S values in the Mesoproterozoic Yangzhuang stage and Hongshuizhuang stage, The average of those was all lower than +20‰. There occured large-amplitude changs in δ34S values of seawater during the Mesoproterozoic. Large-amplitude oscillate of 534S values occured in the intervals of 1600~1400Ma and 1300~1200Ma. The δ13C values of seawater are mostly negative in Changcheng stage of late Paleoproterozoic, -0 ± 1‰ range in Jixian stage of Mesoproterozoic , and the positive 2±2‰ commonly in early Neoproterozoic Jing'eryu stage. From 1000 Ma to 900 Ma, about 108 years interval of oceanic 513C record is shortage. At the end of Paleoproterozoic (1700 - 1600 Ma), the oceanic 813C values change from -3‰ to 0‰, but strongly oscillate near 1600 Ma. Two larger variations of seawater 513C values occur in the Mesoproterozoic: one is a cycle of about 4%o happens at ca. 1400 Ma; another is rise from >2‰ to>5‰ at ca. 1250 Ma and then become stable at the near 1000 Ma. There appears a large positive excursion over +20‰ in 534S value of ancient seawater sulfates in the early Doushantuo stage. Simultaneously, 8 C values of ancient seawater occur a positive excursion reaching 10‰. These allow δ4S values and 513C values to reach high values of+51.7‰ and +6.9‰, respectively. The range of variation in 834S values of seawater is relatively narrow and 513C values are quite high in the middle Doushantuo stage. Then, δ34S values of seawater become oscillating, the same happens in δ13C values. Negative excursions in 834S values and 813C values occur simultaneously at the end of the Doushantuo stage, and the minimum of δ34S values and δ13C values dropped to -11.3‰ and -5.7‰, respectively. The ancient seawater in the Dengying stage has high δS values and δ13C values. Most of the δ34S values of the trace sulfate samples varied between +23.6‰ and +37.9‰ except two boundaries of the Dengying Formation, and the S13C values of the carbonate samples of the Dengying Formation varied between +0.5‰ and +5.0‰. There appeared large negative excursion in 834S values and δ13C values of ancient seawater at the bounder of Precambrian-Cambrian. The isotopic characteristics of sulfur and carbon implicated that the organic productivity and isotopic fractionation caused by biology were low and the palaeoceanic environment was quite unstable during the Mesoproterozoic. The increase and subsequent oscillation of seawater δ13C value occurred from 1700 to 1600 Ma and near 1300 Ma may be responsible to the two global tectonic events happened at coeval time. The characteristics of variation in sulfur and carbon isotopes of ancient seawater imply strong changes in oceanic environment, which became beneficial to inhabitation and propagation of organism. The organic production and the burial rate of organic carbon once reached a quite high level during the Doushantuo stage. However, the state of environment became unstable that means the global climate and the environment possibly were fluctuating and reiterating after the global glaciation. The negative excursions of S34S values and δ13C values occurring at the end of the Doushantuo stage represent a global event, which might be relative to the oxidation of deep seawater. The isotopic characteristics of sulfur and carbon implicated that there were a high organic productivity and a high burial rate of organic carbon in the Dengying stage. It is obvious that the palaeoceanic environment in Dengying stage was stable corresponding and beneficial for biology to inhabit and propagate except for the two boundaries. The tendency of sulfur and carbon isotopic variations maybe resulted from the gradual oxygenation of ocean environment during the Dengying stage. It has been reported that the secular variations of the sulfur isotopic compositions in seawater was negative correlated with that of carbon isotopic compositions. However, our results show that it is not the case. They were negatively correlated in some intervals and positively in some other intervals of the Mesoproterozoic and Neoproterozoic. The difference in correlation may be associated with the changes in conditions of redox in oceanic environment, e.g. sharp change of the oxidation-reduction interface. The strong changes in global environment may induce the abnormality to occur in the biogeo chemical S and C cycles in the ocean and accordingly sharp Variations in isotopic composition of seawater sulfur and carbon during the Mesoproterozoic and Neoproterozoic. Simultaneously, the global tectonism caused large changes of 87Sr/86Sr ratios. The leading factor that causes the variation in isotopic composition is different in the different intervals of the Mesoproterozoic and Neoproterozoic. Thus, there may exist different models of the biogeochemical S and C cycles in the ocean during the Mesoproterozoic and Neoproterozoic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to discover the distribution law of the remaining oil, the paper focuses on the quantitative characterization of the reservoir heterogeneity and the distribution law of the fluid barrier and interbed, based on fine geological study of the reservoir in Liuhuall-1 oil field. The refined quantitative reservoir geological model has been established by means of the study of core analysis, logging evaluation on vertical well and parallel well, and seismic interpretation and prediction. Utilizing a comprehensive technology combining dynamic data with static data, the distribution characteristics, formation condition and controlling factors of remaining oil in Liuhuall-1 oil field have been illustrated. The study plays an important role in the enrichment regions of the remaining oil and gives scientific direction for the next development of the remaining oil. Several achievements have been obtained as follows: l.On the basis of the study of reservoir division and correlation,eight lithohorizons (layer A, B_1, B_2, B_3, C, D, E, and F) from the top to the bottom of the reservoir are discriminated. The reef facies is subdivided into reef-core facies, fore-reef facies and backreef facies. These three subfacies are further subdivided into five microfacies: coral algal limestone, coralgal micrite, coral algal clastic limestone, bioclastic limestone and foraminiferal limestone. In order to illustrate the distribution law of remaining oil in high watercut period, the stratigraphic structure model and sedimentary model are reconstructed. 2.1n order to research intra-layer, inter-layer and plane reservoir heterogeneity, a new method to characterize reservoir heterogeneity by using IRH (Index of Reservoir Heterogeneity) is introduced. The result indicates that reservoir heterogeneity is medium in layer B_1 and B_3, hard in layer A, B_2, C, E, poor in layer D. 3.Based on the study of the distribution law of fluid barrier and interbed, the effect of fluid battier and interbed on fluid seepage is revealed. Fluid barrier and interbed is abundant in layer A, which control the distribution of crude oil in reservoir. Fluid barrier and interbed is abundant relatively in layer B_2,C and E, which control the spill movement of the bottom water. Layer B_1, B_3 and D tend to be waterflooded due to fluid barrier and interbed is poor. 4.Based on the analysis of reservoir heterogeneity, fluid barrier and interbed and the distribution of bottom water, four contributing regions are discovered. The main lies on the north of well LH11-1A. Two minors lie on the east of well LH11-1-3 and between well LH11-1-3 and well LH11-1-5. The last one lies in layer E in which the interbed is discontinuous. 5.The parameters of reservoir and fluid are obtained recurring to core analysis, logging evaluation on vertical well and parallel well, and seismic interpretation and prediction. Theses parameters provide data for the quantitative characterization of the reservoir heterogeneity and the distribution law of the fluid barrier and interbed. 6.1n the paper, an integrated method about the distribution prediction of remaining oil is put forward on basis of refined reservoir geological model and reservoir numerical simulation. The precision in history match and prediction of remaining oil is improved greatly. The integrated study embodies latest trend in this research field. 7.It is shown that the enrichment of the remaining oil with high watercut in Liuhua 11-1 oil field is influenced by reservoir heterogeneity, fluid barrier and interbed, sealing property of fault, driving manner of bottom water and exploitation manner of parallel well. 8.Using microfacies, IRH, reservoir structure, effective thickness, physical property of reservoir, distribution of fluid barrier and interbed, the analysis of oil and water movement and production data, twelve new sidetracked holes are proposed and demonstrated. The result is favorable to instruct oil field development and have gotten a good effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用硝酸盐氮氧同位素讨论地下水硝酸盐来源和转化是地下水硝酸盐研究的热点之一。本研究利用燃烧管法测试了贵阳地下水、部分地表水, 以及雨水中硝酸盐氧同位素, 结果表明地下水中硝酸盐D18O 冬季平均值为+ 12. 6‰±5. 6 (n= 17) , 夏季为+ 11. 1‰±4. 8 (n= 22)。结合氮同位素揭示了贵阳市地下水硝酸盐污染来源的季节性转化, 郊区地下水夏季主要受硝态氮肥等影响, 而市区地下水受人为排污影响严重。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

儿童的故事重述涉及工作记忆和抽象表征能力,是与儿童的日常学业任务密切联系。儿童能否把握时间线索来组织故事重述,反映的是儿童抽象出故事事件内在时间关系的能力,因此对儿童故事重述的探查可以揭示儿童抽象思维发展的一般规律和特点。本研究在前人研究的基础上,系统探查了7-11岁儿童故事重述能力及其策略的发展过程,探讨了时间线索对儿童故事重述的影响,并对ADHD儿童和正常儿童的故事重述及策略进行了比较。 主要研究结果如下: (1)7-11岁儿童故事重述能力总体上随年龄增长而提高,按正确顺序重述的事件数量增多,重述过程中提取和使用的时间线索也增加。其中7-9岁有较快速的发展。 (2)随故事中包含的事件数量的增加,故事难度增大,儿童的故事重述成绩有所下降,故事长度对7岁和9岁儿童的影响大于对11岁儿童的影响。 (3)有、无时间线索语词会影响儿童的故事重述。故事中包含时间语词线索有助于儿童的故事重述。11岁儿童的故事重述已不受有、无时间线索的影响,他们在无时间线索的条件下,更多地主动使用表示因果关系的语词来表征事件关系。 (4)ADHD儿童的故事重述能力在9岁到11岁有较快的发展。但总体而言,ADHD儿童对含有时间线索故事的重述能力显著差于正常儿童。 (5)故事再学习对ADHD儿童和正常儿童的故事重述都存在促进作用。但ADHD儿童故事再学习效果不如正常儿童,低龄儿童中差距尤其明显,随着年龄的增加,ADHD儿童与正常儿童故事再学习效果的差距逐渐缩小。 (6)不同年龄的儿童主要采用四种策略解决问题。随年龄增长,正常儿童和ADHD儿童中使用水平较高的内容主线和逻辑关系策略的人数都有所增加。但ADHD儿童中高水平策略使用人数比例仍低于正常儿童。

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SAPO-11 molecular sieves were synthesized from nonaqueous media. The effects of Si and Al sources as well as solvents on the catalytic performance of SAPO-11 were investigated by the hydroisomerization reaction of n-dodecane. The samples were characterized by XRD, XRF, N-2-adsorption, SEM, NH3-TPD, IR-NH3 and Si-29 CP MAS NMR. The SAPO-11 samples synthesized with tetraethoxysilane as the Si source showed higher Si incorporation contents than the SAPO molecular sieves prepared with polymeric Si sources (fumed silica and Si colloidal gel). The reaction results showed that Pt/SAPO-11 catalysts synthesized from ethylene glycol and glycerol media with the monomeric Si and Al sources (tetraethoxysilane, aluminum isopropoxide) exhibited higher catalytic activities than those catalysts with the polymeric Si or Al (pseudo-boehmite) sources, due to the larger external surface area and higher acidity of the former ones. Especially, the catalyst synthesized in an ethylene glycol medium possessed the highest catalytic activity. Over this catalyst, 88% conversion of n-dodecane was achieved at a low temperature of 250 degrees C.