237 resultados para rotational band


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The newly developed multi-quasiparticle triaxial projected shell model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that gamma-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei based on the ground-state to gamma-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I = 10 aligning states in Ce-134 and both exhibiting a neutron character. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on gamma-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in (270)Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High spin states in Re-174 are investigated via the Sm-152(Al-27, 5n gamma)Re-174 reaction and gamma-gamma coincidence relationships are analysed carefully. A new band is identified due to its spectroscopic connection with the known pi 1/2(-)[541] circle times nu 1/2(-)[521] band. This band is proposed to be the ground-state band built on the pi 1/2(-)[541] circle times nu 5/2(-)[512] configuration in view of the low-lying intrinsic states in the neighbouring odd-mass nuclei. It is of particular interesting that the new band exhibits a phenomenon of low-spin signature inversion, providing a new situation for theoretical investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-spin level structure of Au-188 has been investigated via the Yb-173(F-19,4n gamma) reaction at beam energies of 86 and 90 MeV. The previously reported level scheme has been modified and extended significantly. A new I-pi = 20(+) state associated with pi h(11/2)(-1) circle times nu i(13/2)(-2)h(9/2)(-1) configuration and two new rotational bands, one of which is built on the pi h(9/2) circle times nu i(13/2) configuration, have been identified. The prolate-to-oblate shape transition through triaxial shape has been proposed to occur around Au-188 for the pi h(9/2) circle times nu i(13/2) bands in odd-odd Au isotopes. Evidence for pi h(11/2)(-1) circle times nu i(13/2)(-1) structure of nonaxial shape with gamma < -70 degrees has been obtained by comparison with total Routhian surface and cranked-shell-model calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To gain a better insight into alpha-decay fine structure, we calculate the relative intensities of alpha decay to 2(+) and 4(+) rotational states in the framework of the generalized liquid drop model (GLDM) and improved Royer's formula. The calculated relative intensities of a decay to 2(+) states are in good agreement with the experimental data. For the relative intensities of alpha decay to 4(+) states, a good agreement with experimental data is achieved for Th and U isotopes. The formula we obtain is useful for the analysis of experimental data of alpha-decay fine structure. In addition, some predicted relative intensities which are still not measured are provided for future experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by recent spectroscopy data from fission experiments, we apply the projected shell model to study systematically the structure of strongly deformed, neutron-rich, even-even Nd and Sm isotopes with neutron number from 94 to 100. We perform calculations for rotational bands up to spin I = 20 and analyze the band structure of low-lying states with quasiparticle excitations, with emphasis given to rotational bands based on various negative-parity two-quasiparticle (2-qp) isomers. Experimentally known isomers in these isotopes are described well. The calculations further predict proton 2-qp bands based on a 5(-) and a 7(-) isomer and neutron 2-qp bands based on a 4(-) and an 8(-) isomer. The properties for the yrast line are discussed, and quantities to test the predictions are suggested for future experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-spin states of Pm-140 have been investigated through the reaction Te-126(F-19, 5n) at a beam energy of 90 MeV. A previous level scheme based on the 8(-) isomer has been updated with spin up to 23 (h) over bar. A total of 22 new levels and 41 new transitions were identified. Six collective bands were observed. Five of them were expanded or re-constructed, and one of them was newly identified. The systematic signature splitting and inversion of the yrast pi h(11/2)circle times vh(11/2) band in Pr and Pm odd-odd isotopes has been discussed. Based on the systematic comparison, two Delta I = 2 bands were proposed as double-decoupled bands; other two bands with strong Delta I = 1 M1 transitions inside the bands were suggested as oblate bands with gamma similar to -60 degrees; another band with large signature splitting has been proposed with oblate-triaxial deformation with gamma similar to -90 degrees. The characteristics for these bands have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of the generalized liquid drop model (GLDM) and improved Royer's formula, we investigate the branching ratios and half-lives of alpha-decay to the members of the ground-state rotational bands of heavy even-even Fm and No isotopes. The calculated results are in good agreement with the available experimental data and some useful predictions are provided for future experiments.