185 resultados para possible hydrothermal vents
Resumo:
Liquid segregation phenomena have been found and explained in the F(Li)-rich granites in south China by Wang Linakui et al. (1979; 1983). A number of experimental investigations into the liquid immiscibilities in the granites systems have been carried out (Anfilogov et al., 1983; Glyuk et al., 1971; Glyuk et al., 1973a; 1973b; kovalenko, 1978; Wang Liangkui et al., 1987). Nevertheless, the detailed scenarios of the liquid immiscibilities in the granitic magmas are much less understood. This experimental study is amide to get access to this problem. Starting materials are biotite granite +LiF(3-10%)+NaF(3-10%)+H_2O(30%). The experimental results have shown that the liquid immiscibilities of melts of different compositions occur at 1 kbar and 840 ℃ when 5wt% (LiF + NaF) are added to the granite samples. three kinds of glasses indicating of three types of coexisting immiscible melts have been observed: light blue matrix glass, melanocratic glass balls and leucocratic glass balls. It is interesting that we have observed various kinds of textures as follows: spherulitic texture, droplets, flow bands, swirls. All these textures can be comparable to those in the natural granitic bodies. Electron microprobe data suggest that these different kinds of glasses are of different chemical compositions respectively; matrix glasses are F-poor silicate melts; melanocratic balls correspond to F-rich silicate melts; and leucocratic balls are the melts consisting mainly of fluorides. Raman spectrometric data have indicated that different glasses have different melt structures. TFM Diagrams at 1000 * 10~5 Pa have been plotted, in which two miscible gaps are found. One of the two gaps corresponds to the immiscibility between F - poor silicate melt and F-rich silicate melt, another to that between the silicate melt and fluoride melt. The experiments at different pressures have suggested that the decreases in pressures are favorable to the liquid immiscibility. Several reversal experiments have indicated that the equilibria in different runs have been achieved. We have applied the experimental results to explain the field evidence of immiscibilities in some of granites associated with W-Sn-Nb-Ta mineralization. These field phenomena include flow structure, globular structures,mineralized globular patche and glass inclusions in topaz. We believe that the liquid immiscibility (liquid segregation) is a possible way of generation of F(Li)-rich granites. During the evolution of the granitic magmas, the contents of Li, F, H_2O and ore-forming elements in the magmas become higher and higher. The granites formed in the extensional tectonic settings commonly bear higher abundences of the above-mentioned elements. the pressures of the granitic magmas are relatively lower during the processes of their emplacements and cooling. The late-staged magmas will produce liquid immiscibilities, leading to the production of several coexisting immiscible melts with different chemical compositions. The flow of immiscible consisting magmas will produce F(Li)-rich granites. It is also considered that liquid immiscibilities are of great significance in the production of rare metal granites. The ore-forming processes and magmatic crystallization and metasomatic processes can be occur at the same time. The mineralisations of rare metals are related to both magmatic and hydrothermal processes.
Resumo:
The titanium species existing in titanium silicalite TS-1, which is prepared by hydrothermal method, were investigated using chemical analysis, XRD, FT-IR, Si-29 MAS NMR, UV-VIS, ESR. It has been observed that several kinds of titanium species may exist in titanium silicalite. The form that titanium atoms incorporate into the framework of titanium silicalite synthesized using tetrapropylammonium bromide (TPABr) as template differs from that using the classical method. But, the symmetry of titanium silicalite, changes from monoclinic to orthorhombic with the increase of titanium content in both methods. The Ti-O-2(-) originated from framework titanium and H2O2 has the moderate stability and may be active site in oxidation reaction. TS-1 synthesized using TPABr as template does not contain anatase, but contains a kind of partly condensed titanium species with six-fold coordination. The titanium species may correspond to 270-280 mn band in UV-VIS spectra and also can form Ti-O-2(-). But, this kind of Ti-O-2(-) is very stable and cannot be catalytic active site. So, the six-fold coordination titanium species may be inactive in both the oxidation reaction and the decomposition of H2O2. The hypothesis has been further proved by the phenomena that the titanium species is easily washed off using acid, and acid treating will not influence the catalytic performance of TS-1. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The alumina nanotubes were prepared by using the anionic surfactant, sodium dodecyl sulfonate (SDS), as structure-directing template for the first time with Al(NO3)(3)center dot 9H(2)O as precursor via a hydrothermal method. Structure and morphology of the nanotubes were characterized by XRD, TEM, FT-IR, TG and N-2 adsorption-desorption. The obtained nanotubes were found having outer diameters from 6 to 8 nm with length up to 200 nm. (C) 2005 Elsevier B.V. All rights reserved.