382 resultados para oxyfluoride tellurite glass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband infrared luminescence centred at around 1300 nm with full-width at half maximum of about 342 nm was observed from transparent Ni2+-doped lithium-alumino-silicate glass-ceramics embedded with beta-eucryptite crystallines. The room temperature fluorescent lifetime was 98 mu s. The transparent glass-ceramics may have potential applications in a widely tunable laser and a super-broadband optical amplifier for optical communications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the fabrication and characterization of a ridge optical waveguide in an Er3+/Yb3+ co-doped phosphate glass. The He+ ion implantation (at energy of 2.8 MeV) is first applied onto the sample to produce a planar waveguide substrate, and then Ar+ ion beam etching (at energy of 500 eV) is carried out to construct rib stripes on the sample surface that has been deposited by a specially designed photoresist mask. According to a reconstructed refractive index profile of the waveguide cross section, the modal distribution of the waveguide is simulated by applying a computer code based on the beam propagation method, which shows reasonable agreement with the experimentally observed waveguide mode by using the end-face coupling method. Simulation of the incident He ions at 2.8 MeV penetrating into the Er3+/Yb3+ co-doped phosphate glass substrate is also performed to provide helpful information on waveguide formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitization mechanisms of Yb3+ to Tm3+ for the blue upconversion luminescence in fluorophosphate glass were studied. Two different mechanisms exist in the sensitization. One is the sequential sensitization that Tm3+ is excited from H-3(6) to (1)G(4) through absorbing three photons transferred from Yb3+ one by one. Another is the cooperative sensitization that two Yb3+ ions form a couple cluster firstly, and then the couple cluster Yb3+ ions transfer their energy to Tm3+ and excite it to (1)G(4). With the increment of the concentration of Yb3+ ions, the sequential sensitization becomes weak and the cooperative sensitization becomes intense, and the transformation trend of sensitization mechanism with the increment of Yb3+ concentration can be clarified by the introduction of Th3+ ions in the glass. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The doped Eu3+ ions can be partly reduced to Eu2+ in a series of MO-B2O3: Eu (M=Ba, Sr, Ca) glasses synthesized in air atmosphere, but not in the 12CaO-7Al(2)O(3): Eu glass. The different redox-behavior of Eu ions in these two glass systems is attributed to the different host optical basicity. It is found that a lower valence state of Eu2+ is more favorable in acidic glasses, which have lower optical basicities. A notion of the critical value of optical basicity is introduced empirically, which can be used as a guide for the selection of glass composition suitable to incorporate Eu2+ for luminescence. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate broadband optical amplification at 1.3 mu m in silicate glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals with 980 nm excitation for the first time. The optical gain efficiency is calculated to be about 0.283 cm(-1) when the excitation power is 1.12 W. The optical gain shows similar wavelength dependence to luminescence properties. (C) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband infrared luminescence covering the optical telecommunication wavelength region of 0, E and S bands was observed from bismuth-doped zinc aluminosilicate glasses and glass-ceramics. The spectroscopic properties of the glasses and glass-ceramics depend on the thermal-treatment history. With the appearance of gahnite (ZnAl2O4) crystalline phase, the fluorescent peak moves to longer wavelength, but the fluorescent intensity decreases. The similar to 1300 nm fluorescence with a FWHM larger than 250 nm and a lifetime longer than 600 mu s possesses these optical materials with potential applications in laser devices and broadband amplifiers. The broad infrared luminescence from the bismuth-doped zinc aluminosilicate glasses and glass-ceramics might be from BiO or bismuth clusters rather than from Bi5+ and Bi3+. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

abstract {Rare earth ions doped multi-component glass fibers have important application in broad band fiber amplifier and up-conversion fiber lasers. In this paper, the mechanism and the progress of study on rare earth ions doped multi-component glass fibers in broad band fiber amplifier and up-conversion fiber lasers are introduced and reviewed. The questions and the applications of rare earth ions doped multi-component glass fibers in the future are also prospected. Based on the present research progress, it is suggested to further study the tellurite and bismuth glasses, which are used as fiber materials in broad band fiber amplifier. To up-conversion fiber laser, it is still need to further investigate novel glasses, which has low phonon energy and good physical and chemical properties.}

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FSodium phosphate tellurite glasses in the system (NaPO3)(x)(TeO2)(1-x) were prepared and structurally characterized by thermal analysis, vibrational spectroscopy, X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses, the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units, and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismotic units. The combined interpretation of the O 1s XPS data and the P-31 solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather the formation of homootomic P-O-P and Te-O-Te linkages is favored over mixed P-O-Te connectivities. As a consequence of this chemical segregation effect, the spatial sodium distribution is not random, as also indicated by a detailed analysis of P-31/No-23 rotational echo double-resonance (REDOR) experiments. ACHTUNGTRENUNG(TeO2)1 x were prepared and structurally characterized by thermal analysis,vibrat ional spectroscopy,X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses,the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units,and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismatic units. The combined interpretation of the O 1s XPS data and the 31P solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather,the formation of homoatomic P O P and Te O Te linkages is favored over mixed P O Te connectivities. As a consequence of this chemical segregation effect,the spatial sodium distribution is not random,as also indicated by a detailed analysis of 31P/23Na rotational echo double-resonance (REDOR) experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass systems of composition xBiCl(3)-(1-x)TeO2 (x=0.2, 0.4, 0.5 and 0.6, respectively) have been investigated by means of DSC, infrared absorption spectroscopy and Raman spectroscopy in order to obtain information about the transformation of structure, thermal and optical properties in the formation of the glass network. The results confirm that the addition of BiCl3 network former increases the glass forming ability and the optical transmission range. And also from Raman results a structural evolution was observed where the number of structural units described as [TeO3] trigonal pyramids, [TeO3+1] polyhedra and ionic behavior bonds (NBO) increases at the expense of the [TeO4] trigonal bipyramids. Bi3+ ions exist in network structure as [BiO6] or [BiCl6] octahedral coordination. As upconversion luminescence glass host, this glassy system is desired for optical properties but the thermal stability will still be improved. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the energy transfer and frequency upconversion spectroscopic properties of Er3+-doped and Er3+/Yb3+-codoped TeO2-ZnO-Na2O-PbCl2 halide modified tellurite glasses upon excitation with 808 and 978 nm laser diode. Three intense emissions centered at around 529, 546 and 657 nm, alongwith a very weak blue emission at 4 10 nm have clearly been observed for the Er3+/Yb3+-codoped halide modified tellurite glasses upon excitation at 978 nm and the involved mechanisms are explained. The quadratic dependence of fluorescence on excitation laser power confirms the fact that the two-photon contribute to the infrared to green-red upconversion emissions. And the blue upconversion at 410 nm involved a sequential three-photon absorption process. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the successful preparation and a detailed study on the up-conversion properties of Er3+ -doped TeO2-ZnO-PbCl2 oxylialide tellurite glasses. Three intense emissions centered at around 527, 549 and 666 nm have been clearly observed under 977 nm excitation and the involved mechanisms have been explained. The green emissions centered at 527 and 549 nin are due to the H-2(11/2 ->) I-4(15/2) and S-4(3/2) -> I-4(15/2) transitions, and the red up-conversion emission centered at 666 nm is associated with the F-4(9/2) -> I-4(15/2) transitions of Er3+ ions, respectively. The quadratic dependence of fluorescence on excitation laser power confirm that two-photons contribute to up-conversion of the green-red emissions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An erbium-doped phosphate glass fibre has been drawn by the rod-in-tube technique in our laboratory. The gain for the Er3+-doped phosphate glass fibre with different pump powers and with different input signal wavelengths is investigated. The 2.2-cm-long fibre, pumped by a single-mode 980-nm fibre-pigtailed laser diode, can provide a net gain per unit length greater than 1.8dB/cm. The pump threshold is about 50 mW at the wavelength of 1534 nm, and below 70 mW at 1550 nm. The gain linewidth of the Er3+-doped phosphate glass fibre is greater than 34 nm and can cover the C band in optical communication networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From Raman and IR spectra, obvious differences of the glass structure were observed in non-Yb3+-doped and Yb3+ -doped fluorophosphate glasses. Results showed that Yb3+ ions can induce, in a better glass, polymerization and network uniformity. Compared with the monophosphate-mastered Yb3+-free glass, Yb3+-doped glass has a pyrophosphate environment. The main building blocks in Yb3+ -doped samples are metaphosphate groups, pyrophosphate groups (P-2(O,F)(7),PO3F), Al[F-6]+Al[O,F](6) and F3Al-O-AlF3 while those of the Yb3+ -free glasses are monophosphate groups P(O,F)(4), little pyrophosphate groups, Al[F-4]+Al[F-6]+Al[O,F](4)+Al[O,F](6) and F3Al-O-AlF3. The DSC analysis also showed a slight increase in crystallization stability. (c) 2005 Elsevier B.V. All rights reserved.