192 resultados para leaching of substrates


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The epitaxial crystallization behavior of high-density polyethylene on the boundary of highly oriented isotactic polypropylene (iPP) substrates has been investigated by means of atomic force microscopy (AFM) and transmission electron microscopy (TEM). The results obtained from AFM and TEM indicate that the epitaxial nucleation of HDPE on the highly oriented iPP substrates occurs earlier than that in the pure HDPE phase, i.e., homogeneous nucleation. Therefore the epitaxially grown HDPE lamellae can grow across the boundary of the iPP substrate into the HDPE spherulitic phase with the epitaxial orientation relationship remaining.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to study the oriented (epitaxial) crystallization of thermoplastic polymers on oriented polymer substrates, generally the transmission electron microscopy (TEM) is used. With this instrument, the crystallized material can easily be resolved and orientation relationships can be monitored by electron diffraction. Disadvantages are the time consuming sample preparations and difficulties in the in-situ observations of the crystallization events, because of the radiation sensitivity of the polymer crystals. It is demonstrated that these disadvantages of the TEM can be eleminated by the use of different methods of light optical contrasts under specific preparation conditions of the samples and that the optical microscopy being a supplementary method to the TEM for investigations of epitaxial crystallization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three samples of β-carboxyethyl-germanium sesquioxide (Ge-132) have been prepared with different methods. Their IR, Raman, XPS, TG-DTA and FAB-MS spectra are quite different and indicate that they have different degree of polymerization and molecule structures. In the aqeous solution, all of them interaot strongly with fructose, but not with polypeptides such as GSH and GSSG. This faot may be important in understanding the bioactivity of Ge-132.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of methanol in methanol-water mixed eluents on the capacity factor (P), an important parameter which could depict leaching potential of hydrophobic organic chemicals (HOCs) in soil leaching column chromatography (SLCC), was investigated. Two reference soils, GSE 17201 obtained from Bayer Landwirtschaftszentrum, Monheim, Germany and SP 14696 from LUFA, Spencer, Germany, were used as packing materials in soil columns, and isocratic elution with methanol-water mixtures at different volume fractions of methanol (phi) were tested. Shortterm exposure of the column (packed with the GSE 17201 soil) to the eluents increased solute retention by a certain (23% log-unit) degree evaluated through a correlation with the retention on the same soil column but unpreconditioned by methanol-containing eluents. Long-term exposure of soil columns to the eluents did not influence the solute retention. A log-linear equation, log k' = log k'(w) - Sphi, could well and generally describe the retention of HOCs in SLCC. For the compounds of homologous series, logk'(w), had good linear relationship with S, indicating the hydrophobic partition mechanism existing in the retention process. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degreesC was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degreesC (k'(30)/k'(40)) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C-18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The soil organic partition coefficient (K-oc) is one of the most important parameters to depict the transfer and fate of a chemical in the soil-water system. Predicting K-oc by using a chromatographic technique has been developing into a convenient and low-cost method. In this paper, a soil leaching column chromatograpy (SLCC) method employing the soil column packed with reference soil GSE 17201 (obtained from Bayer Landwirtschaftszentrum, Monheim, Germany) and methanol-water eluents was developed to predict the K-oc of hydrophobic organic chemicals (HOCs), over a log K-oc range of 4.8 orders of magnitude, from their capacity factors. The capacity factor with water as an eluent (k(w)') could be obtained by linearly extrapolating capacity factors in methanol-water eluents (k') with various volume fractions of methanol (phi). The important effects of solute activity coefficients in water on k(w)' and K-oc were illustrated. Hence, the correlation between log K-oc and log k(w)' (and log k') exists in the soil. The correlation coefficient (r) of the log K-oc vs. log k(w)' correlation for 58 apolar and polar compounds could reach 0.987, while the correlation coefficients of the log K-oc-log k' correlations were no less than 0.968, with phi ranging from 0 to 0.50. The smaller the phi, the higher the r. Therefore, it is recommended that the eluent of smaller phi, such as water, be used for accurately estimating K-oc. Correspondingly, the r value of the log K-oc-log k(w)' correlation on a reversed-phase Hypersil ODS (Thermo Hypersil, Kleinostheim, Germany) column was less than 0.940 for the same solutes. The SLCC method could provide a more reliable route to predict K-oc indirectly from a correlation with k(w)' than the reversed-phase liquid chromatographic (RPLC) one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article reported the NaA zeolite membranes with high permeance synthesized with microwave heating method under different conditions: (1) on a macroporous substrate in gel, (11) on a mesoporous/macroporous (top-mesoporous-layer-modified macroporous) substrate in gel, and (111) on a mesoporous/macroporous substrate in sol. In general, the H-2 permeance of the NaA membranes by microwave heating in gel was usually at the level of 10(-6) mol s(-1) m(-2) Pa-1, much higher than that by the conventional hydrothermal synthesis. At similar H-2/C3H8 permselectivity. On the substrate modified mesoporous top layer, the H-2 permeance of the NaA membranes by microwave heating in gel or sol was further enhanced, while maintaining comparable H-2/C3H8 permselectivity, due to the prevention of penetration of the reagent into the pores of the macroporous substrate. Meanwhile, the synthesis took less time in sol than in gel on the mesoporous/macroporous substrate. The NaA membranes synthesized in sol had larger permeance than those in gel and underwent transformation in shorter time. The permeation of C3H8 suggested that there existed unwanted intercrystalline pores or defects in the membranes. © 2005 Elsevier B.V. All rights reserved.