309 resultados para isotope technique
Resumo:
A-type zeolite membranes were prepared on the nonporous metal supports by using electrophoretic technique. The as-synthesized membranes were characterized by XRD and SEM. The effect of the applied potential on the formation of the A-type zeolite membrane was investigated, and the formation mechanism of zeolite membrane in the electric field was discussed. The results showed that the negative charged zeolite particles could migrate to the anode metal surface homogenously and rapidly under the action of the applied electric field, consequently formed uniform and dense membranes in short time. The applied potential had great effect on the membrane formation, and more uniform and denser zeolite membranes were prepared on the nonporous metal supports with 1 V potential.
Resumo:
In this review, a few examples of state-to-state dynamics studies of both unimolecular and bimolecular reactions using the H-atom Rydberg tagging TOF technique were presented. From the H2O photodissociation at 157 nm, a direction dissociation example is provided, while photodissociation of H2O at 121.6 has provided an excellent dynamical case of complicated, yet direct dissociation process through conical intersections. The studies of the O(D-1) + H-2 --> OH+H reaction has also been reviewed here. A prototype example of state-to-state dynamics of pure insertion chemical reaction is provided. Effect of the reagent rotational excitation and the isotope effect on the dynamics of this reaction have also been investigated. The detailed mechanism for abstraction channel in this reaction has also been closely studied. The experimental investigations of the simplest chemical reaction, the H-3 system, have also been described here. Through extensive collaborations between theory and experiment, the mechanism for forward scattering product at high collision energies for the H+HD reaction was clarified, which is attributed to a slow down mechanism on the top of a quantized barrier transition state. Oscillations in the product quantum state resolved different cross sections have also been observed in the H+D-2 reaction, and were attributed to the interference of adiabatic transition state pathways from detailed theoretical analysis. The results reviewed here clearly show the significant advances we have made in the studies of the state-to-state molecular reaction dynamics.
Resumo:
The semirigid vibrating rotor target model is applied to study the isotope effect in reaction H + CH4-->H-2 + CH3 using time-dependent wave-packet method. The reaction probabilities for producing H-2 and HD product channels are calculated. The energy dependence of the reaction probabilities shows oscillating structures for both reaction channels. At low temperature or collision energies, the H atom abstraction is favored due to tunnelling effect. In partially deuterated CHxDy (x + y = 4), the breaking of the C-H bond is favored over that of the C-D bond in the entire energy range studied. In H + CHD3 reaction at high energies, the HD product dominates simply due to statistical factor. (C) 2003 American Institute of Physics.
Resumo:
A method has been developed for the determination of interactions of metal ions and protein by using microdialysis sampling technique combined with pre-column derivation and reversed-phase ion-pair liquid chromatographic (HPLC analysis. Cu(II), Zn(II) and human serum albumin (HSA) were chosen as model metal ions and protein, respectively. The mixed solutions of metal ions and HSA with different molar ratios buffered with 0.1 M Tris-HCl containing 0.1 M NaCl at pH 7.43 were sampled with a mirodialysis probe by keeping perfusion rate at 1 mul/min and the temperature at 37 degreesC. The free concentrations of metal ions in microdialysates were assayed by precolumn derivatization with meso-tetra(4-sulfophenyl)-porphyrin (TPPS4) followed ion-pair HPLC analysis. The recovery (R) of microdialysis sampling was measured in vitro under similar conditions as 65.74% for Cu(II), 70.45% for Zn(II) with R.S.D. below 3.2%. The primary binding constants and number of binding site estimated by the Scatchard plot analysis are 5.04 x 10(6) M-1 and 0.85 for Cu(II), and 9.87 x 10(6) M-1 and 1.10 for Zn(II), respectively. The competition of Cu(II) and Zn(II) at the second binding site on HSA was investigated, and it was observed that there is a second site on HSA to bind Cu(II) and Zn(II), the affinity of Cu(II) is stronger than that of Zn(II) to this second site of HSA. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Linking organisms or groups of organisms to specific functions within natural environments is a fundamental challenge in microbial ecology. Advances in technology for manipulating and analyzing nucleic acids have made it possible to characterize the members of microbial communities without the intervention of laboratory culturing. Results from such studies have shown that the vast majority of soil organisms have never been cultured, highlighting the risks of culture-based approaches in community analysis. The development of culture-independent techniques for following the flow of substrates through microbial communities therefore represents an important advance. These techniques, collectively known as stable isotope probing (SIP), involve introducing a stable isotope-labeled substrate into a microbial community and following the fate of the substrate by extracting diagnostic molecular species such as fatty acids and nucleic acids from the community and determining which specific molecules have incorporated the isotope. The molecules in which the isotope label appears provide identifying information about the organism that incorporated the substrate. Stable isotope probing allows direct observations of substrate assimilation in minimally disturbed communities, and thus represents an exciting new tool for linking microbial identity and function. The use of lipids or nucleic acids as the diagnostic molecule brings different strengths and weaknesses to the experimental approach, and necessitates the use of significantly different instrumentation and analytical techniques. This short review provides an overview of the lipid and nucleic acid approaches, discusses their strengths and weaknesses, gives examples of applications in various settings, and looks at prospects for the future of SIP technology.
Resumo:
A new method for the determination of thyroxine in blood is described. It relies upon the quantitative dependence of the distribution of thyroxine between albumin and thyroxine-binding protein when exogenous 131I-labelled thyroxine is added to serum in vitro. Preliminary results suggest an accuracy in the estimate of the hormone of about 5–10%. Results in a group of patients whose plasma P.B.I, levels were also determined are given and shown to be similar.
Resumo:
We measured delta C-13 of CO2, CH4, and acetate-methyl in profundal sediment of eutrophic Lake Dagow by incubation experiments in the presence and absence of methanogenic inhibitors chloroform, bromoethane sulfonate (BES), and methyl fluoride, which have different specificities. Methyl fluoride predominantly inhibits acetoclastic methanogenesis and affects hydrogenotrophic methanogenesis relatively little. Optimization of methyl fluoride concentrations resulted in complete inhibition of acetoclastic methanogenesis. Methane was then exclusively produced by hydrogenotrophic methanogenesis and thus allowed determination of the fractionation factors specific for this methanogenic pathway. Acetate, which was then no longer consumed, accumulated and allowed determination of the isotopic signatures of the fermentatively produced acetate. BES and chloroform also inhibited CH4 production and resulted in accumulation of acetate. The fractionation factor for hydrogenotrophic methanogenesis exhibited variability, e. g., it changed with sediment depth. The delta C-13 of the methyl group of the accumulated acetate was similar to the delta C-13 of sedimentary organic carbon, while that of the carboxyl group was by about 12 parts per thousand higher. However, the delta C-13 of the acetate was by about 5 parts per thousand lower in samples with uninhibited compared with inhibited acetoclastic methanogenesis, indicating unusual isotopic fractionation. The isotope data were used for calculation of the relative contribution of hydrogenotrophic vs. acetoclastic methanogenesis to total CH4 production. Contribution of hydrogenotrophic methanogenesis increased with sediment depth from about 35% to 60%, indicating that organic matter was only partially oxidized in deeper sediment layers.
Resumo:
Wind erosion is one of the major environmental problems in semi-arid and arid regions. Here we established the Tariat-Xilin Gol transect from northwest to southeast across the Mongolian Plateau, and selected seven sampling sites along the transect. We then estimated the soil wind erosion rates by using the Cs-137 tracing technique and examined their spatial dynamics. Our results showed that the Cs-137 inventories of sampling sites ranged from 265.63 +/- 44.91 to 1279.54 +/- 166.53 Bq.m(-2), and the wind erosion rates varied from 64.58 to 419.63 t.km(-2).a(-1) accordingly. In the Mongolia section of the transect (from Tariat to Sainshand), the wind erosion rate increased gradually with vegetation type and climatic regimes; the wind erosion process was controlled by physical factors such as annual precipitation and vegetation coverage, etc., and the impact of human activities was negligible. While in the China section of the transect (Inner Mongolia), the wind erosion rates of Xilin Hot and Zhengxiangbai Banner were thrice as much as those of Bayannur of Mongolia, although these three sites were all dominated by typical steppe. Besides the physical factors, higher population density and livestock carrying level should be responsible for the higher wind erosion rates in these two regions of Inner Mongolia.
Resumo:
Soil wind erosion is the primary process and the main driving force for land desertification and sand-dust storms in and and semi-arid areas of Northern China. While many researchers have studied this issue, this study quantified the various indicators of soil wind erosion, using the GIS technology to extract the spatial data and to construct a RBFN (Radial Basis Function Network) model for Inner Mongolia. By calibrating sample data of the different levels of wind erosion hazard, the model parameters were established, and then the assessment of wind erosion hazard. Results show that in the southern parts of Inner Mongolia wind erosion hazards are very severe, counties in the middle regions of Inner Mongolia vary from moderate to severe, and in eastern are slight. Comparison of the results with other research shows conformity with actual conditions, proving the reasonability and applicability of the RBFN model. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM)+ data have been successfully employed in the field of mineral exploration to identify key minerals over arid and semi-arid terrains. However, redundant vegetation and cloud may seriously interfere with the discrimination of the minerals with diagnostic features. Therefore, in this study, we use masking technique to eliminate the negative influence of vegetation and cloud and Crosta technique to identify the diagnostic features of hydroxyl-minerals, carbonate-minerals and iron oxides. Then the anomalies were endowed with special colours and overlapped with the remote-sensing and geochemical data, overlaying images as remote-sensing anomalies. The mineral exploration work was carried through by synthetic analysis of the remote-sensing images, geochemical data and structures. Finally, areas with high correlation between the occurrence of hydrothermal alteration and presence of main faults and geochemical anomalies were considered as mineral exploration targets worthy of further detailed exploration programmes.
Resumo:
A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer.
Resumo:
This paper reports a new patterning method, the complementary-structure micropatterning (CSMP) technique, to fabricate the undercut structures for the passive-matrix display of organic light-emitting diodes (OLEDs). First, the polyvinylpyrrolidone (PVP) stripe patterns with a trapeziform cross-section were formed by micromolding in capillaries. Then the photoresist was spin coated on the substrate with the patterned PVP stripes and developed in water.