226 resultados para idrodinamica, fluidi, Navier-Stokes, Kelvin, Jeans
Resumo:
假设泥石流中的粗颗粒(如石块等)以跳跃的方式前进,通过分析单个颗粒在定常充分发展的流场中的运动,给出了单一起跳速度下以及具有一定分布的起跳速度下,颗粒数密度随高度的分布,并给出了起跳粒径有分布时颗粒的平均粒径随高度的分布,定性地解释了泥石流中的反粒径分布现象。
Resumo:
A high order difference scheme is used to simulate the spatially developing compressible axisymmetric jet. The results show that the Kelvin-Helmholtz instability appears first when the jet loses its stability, and then with development of jet the increase in nonlinear effects leads to the secondary instability and the formation of the streamwise vortices. The evolution of the three-dimensional coherent structure is presented. The computed results verify that in axisymmetric jet the secondary instability and formation of the streamwise vortices are the important physical mechanism of enhancing the flow mixing and transition occurring.
Resumo:
H-2 and O-2 multiplex coherent anti-stokes Raman spectroscopy (CARS) employing a single dye laser has been explored to simultaneously determine the temperature and concentrations of H-2 and O-2 in a hydrogen-fueled supersonic combustor. Systematic calibrations were performed through a well-characterized H-2/air premixed flat-flame burner. In particular, temperature measurement was accomplished using the intensity ratio of the H-2 S(5) and S(6) rotational lines, whereas extraction of the H-2 and O-2 concentrations was obtained from the H-2 S(6) and O-2 Q-branch, respectively. Details of the calibration procedure and data reduction are discussed. Quantification of the supersonic mixing and combustion characteristics applying the present technique has been demonstrated to be feasible. The associated detection limits as well as possible improvements are also identified.
Resumo:
在气固两相流的单向耦合模型框架下,研究大气悬浮沙尘在阵风作用下的运动轨迹及其随大气风速、沙尘粒径的变化,揭示了在Stokes阻力、Saffman力和重力共同作用下,沙尘悬移可能转换为跃移的现象。
Resumo:
Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.
Resumo:
Viscoelastic deformation and creep behavior of La- and Ce-based bulk metallic glasses (BMGs) with low glass transition temperature are investigated through nanoindentation at room temperature. Creep compliance and retardation spectra are derived to study the creep mechanism. The time-dependent displacement can be well described by a generalized Kelvin model. A modification is proposed to determine the elastic modulus from the generalized Kelvin model. The results are in excellent agreement with the elastic modulus determined by uniaxial compression tests. (c) 2007 Published by Elsevier B.V.
Resumo:
Direct numerical simulation (DNS) is used to study flow characteristics after interaction of a planar shock with a spherical media interface in each side of which the density is different. This interfacial instability is known as the Richtmyer-Meshkov (R-M) instability. The compressible Navier-Stoke equations are discretized with group velocity control (GVC) modified fourth order accurate compact difference scheme. Three-dimensional numerical simulations are performed for R-M instability installed passing a shock through a spherical interface. Based on numerical results the characteristics of 3D R-M instability are analysed. The evaluation for distortion of the interface, the deformation of the incident shock wave and effects of refraction, reflection and diffraction are presented. The effects of the interfacial instability on produced vorticity and mixing is discussed.
Resumo:
Visualization results demonstrate the evolution of Kelvin-Helmholtz unstable waves into vortex pairing in a separated shear layer of a blunf circular. The results with acoustic excitation are quite different from that without acoustic excitation, and the phenomenon with excitation in a separated shear layer follows the rule of Devil s staircase, which always occurs in a non-linear dynamical system of two coupling vibrators.
Resumo:
The viscoelastic deformation of Ce-based bulk metallic glasses (BMGs) with low glass transition temperature is investigated at room temperature. Contact stiffness and elastic modulus of Ce-based BMGs cannot be derived using the conventional Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)]. The present work shows that the time dependent displacement of unloading segments can be described well by a generalized Kelvin model. Thus, a modified Oliver-Pharr method is proposed to evaluate the contact stiffness and elastic modulus, which does, in fact, reproduce the values obtained via uniaxial compression tests. (c) 2007 American Institute of Physics.
Resumo:
提出了解决Stokes波与指数剖面流同向或反向相遇过程中波传播特征改变问题的五阶理论, 给出了这种相互作用前后波参数间的关系和相应流场的变化, 并与线性结果进行了比较.
Resumo:
采用高阶精度差分格式,求解二维可压缩N-S方程,直接数值模拟了可压缩平面混合流的二维拟序结构.给出了流动失稳,Kelvin-Helmholtz不稳定波的发展.展向大涡的卷起和相邻两涡卷对并,包括3次对并的发展过程.研究了平面混合流时-空的发展和可压缩效应对其发展的影响.
Resumo:
提出一种仅需一台染料激光器即可同时测量火焰中氢和氧的CARS谱的新方法。取带宽为120cm~(-1),中心波长位于580.4nm的Stokes光束与532nm的泵浦光束相配合,同时测量氢扩散火焰中的氢和氧的CARS谱,用氢的S(6)和S(5)的积分强度比确定火焰中的温度并与氮的Q支CARS谱测量的温度和经过热损耗修正的热电偶测得的温度取得了相当好的一致结果。一次测出氢和氧的CARS谱,避免多次测量中参数的难以重复性,提高了以温度为参数来确定浓度的准确性。
Resumo:
本文研究低雷诺数情况下偏心圆柱间定常Streaming流动问题,其中内柱以速度U(x)cosωt在静止不可压粘性流体中作小振幅直线简谐振动,外柱则固定不动。
Resumo:
本文采用十五阶 Stokes 波的 Pade 逼近,获得了与实验较为一致的流场,并且利用已有的破碎波的速度、加速度场,计算了非线性波和破碎波对各种杆件作用力,比较了它们的主要特征,为海洋工程设计提供依据。
Resumo:
对不可压缩层流二维干扰流动,本文提出一个干扰流动(IF)理论。IF理论要点为:1)干扰流动沿主流的法向被分为三层即粘性层、干扰层和无粘层,引进了法向动量交换为主导过程的干扰层概念。2)利用力学守恒律、三层匹配关系及文中引进的干扰模型,把三层的空间尺度及惯性-粘性诸力的数置级表示为单参数m的函数,m<1/2•3)导出描述各层流动的控制方程、导出描述全城流动的控制方程为简化Navie-Stokes(SNS)方程。IF理论适用于不存在分离的附着干扰流动以及存在分离的大范围干扰流动,经典边界层(CBL)理论和流动分离局部区域Triple-Deck(TD)理论分别是本文理论在参数m=O和1/4时的两个特例,本文理论容易推广到可压缩、三维及湍流流动。