195 resultados para feature bearing angle
Resumo:
Reservoir prediction techniques from prestack seismic are among the most important ones for exploration of lithologic hydrocarbon reservoir. In this paper, we set the turbidite fan sandstone reservoir in Liao-Zhong depress as our researching target, and aims to solve the apllication difficulties on pre-stack inversion in the area, where the drilling data is scarce and the reservoir is lateral varied. Meanwhile, AVO analysis and pre-stack inversion for gas-bearing detection is systematically researched. The seismic reflection characters of gas-bearing sandstone in turbidite fan with different fluid content are defined, after analyzing results from AVO seismic simulation and porous fluid replacement of real log data, and under the guides of the seismic characters from classical gas-bearing sandstone reservoir and numerical simulation for complicate gas-bearing sandstone. It is confirmed that detecting gas-bearing sandstone in turbidite fan via AVO technologies is feasible. In terms of AVO analysis, two AVO characters, fluid detection factor and product of intercept and gradient, can effectively identify top and bottom boundaries and lateral range of tuibidite gas sand by comparing real drilling data. Cross-plotting of near and far angle stack data could avoid the correlation existing in P-G analysis. After comparing the acoustic impedance inversions with routine stacked data and AVO intercept, impedance derived from AVO intercept attribute could reduce the acoustic impedance estimating error which is caused by AVO. On the aspect of elastic impedance inversion, the AVO information in the pre-stack gathers is properly reserved by creating partial angle stack data. By the far angle elastic impedance alone, the gas sand, with abnormally low range of values, can be identified from the background rocks. The boundary of gas sand can also be clearly determined by cross-plotting of near and far angle elastic impedances. The accuracy of far angle elastic impedance is very sensitive to the parameter K, and by taking the statistical average of Vp/Vs on the targeted section in key wells, the accuracy of low frequency trends is gurranteed; the intensive absorsion within the area of the gas sand, which tends to push the spectral of seismic data to the lower end, will cause errors on the inversion result of elastic impedance. The solution is to confine the inversion on the interested area by improving the wavelet. On the aspect of prestack AVA simultaneous inversion, the constraint of local rock-physical trends between velocities of P-wave、S-wave and density successfully removes the instability of inversion, thus improves the precision of the resulting elastic parameters. Plenty of data on rock properties are derived via AVO analysis and prestack seismic data inversion. Based on them, the fluid anomaly is analysized and lithological interpretation are conducted. The distribution of gas sand can be consistently determined via various of ways, such as cross-plotting of P and G attributes, near and far partial angle stack data, near and far angle elastic impedances, λρ and Vp/Vs, etc. The shear modulo and density are also reliable enough to be used for lithological interpretation. We successfully applied the AVO analysis and pre-stack inversion techniques to gas detecting for turbidite fan sand reservoir in Liao-Zhong depression.
Resumo:
Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.
Resumo:
The seismic wide-angle reflection/refraction method is the one of the most effective method for probing the crustal and upper mantle structure. It mainly uses the wide-angle reflection information from the boundary in the crust and the top boundary of the upper mantle to rebuild the crust and upper mantle structure. Through analyzing the reflection and transmission coefficients of various incident waves on the interface, we think relative to the pre-critical angle reflection information the post critical angle reflection information that received by wide-angle seismic data exists a time-shift effect with the offset variation, and then it must cause the error for velocity analysis and structure image. The feature of the wide-angle seismic wave field of the fourteen representative crust columns tell us that the wide-angle effects in the different representative tectonic units for the interface depth and the interval velocity in crust. We studied the features of the wide-angle seismic wave field through building the crust model and inverse its travel time by GA method to know the wide-angle influence on crustal velocity image. At last we finished the data processing of the Tunxi-Wenzhou wide-angle seismic profile. The results are as following: (1) Through building crust model, we labeled the travel time for all the phases by ray tracing method and remove wide-angle effects method, it revealed the wide-angle effect exists in the seismic data. (2) The travel time inversion by GA method can tell us that the depth by traditional ray tracing method is shallower than the result by remove wide-angle effects method, the latter can recover the crust structure model in effect. (3) We applied the two method mentioned before to the fourteen representative crust columns in China. It indicates that the removed wide-angle effect method in travel time inversion is reasonable and effective. (4) The real data processing from Tunxi-Wenzhou wide-angle seismic profile give us the basic structure through the two ways. The main influence exhibits in the difference of the interval velocity of the curst, and the wide-angle effects in shallow interface are stronger than the deep interface.
Resumo:
The development petroleum geology has made people from studying and studying and predicting in statically and respectively the pool-forming conditions of an area such as oil source bed, reservoir, overlying formation, migration, trap and preservation, etc. to regarding these conditions as well as roles of generation, reservation and accumulation as an integrated dynamic evolution development system to do study .Meanwhile apply various simulating means to try to predict from quantitative angle. Undoubtedly, the solution of these questions will accumulate exploration process, cut down exploration cost and obtain remarkable economic and social benefits. This paper which take sedimentology ,structural geology and petroleum geology as guides and take petroleum system theory as nucleus and carry out study thinking of beginning with static factor and integration of point and face as well as regarding dynamic state factor as factor and apply study methods of integration of geology, Lab research and numerical modeling proceed integrated dissect and systematic analysis to GuNan-SanHeCun depression. Also apply methods of integration of sequence stratigraphy, biostratigraphy, petrostratigraphy and seismic data to found the time-contour stratigraphic framework and reveal time-space distribution of depositional system and meantime clarify oil-source bed, reservoir and overlying distribution regular patterns. Also use basin analysis means to study precisely the depositional history, packed sequences and evolution. Meanwhile analyze systematically and totally the fracture sequence and fault quality and fault feature, study the structural form, activity JiCi and time-space juxtaposion as well as roles of fault in migration and accumulation of oil and gas of different rank and different quality fault. Simultaneously, utilize seismic, log, analysis testing data and reservoir geology theory to do systematic study and prediction to GuNan-SanHeCun reservoir, study the reservoir types macroscopic distribution and major controlling factors, reservoir rock, filler and porosity structural features as well as distribution of reservoir physical property in 3D space and do comprehensive study and prediction to major controlling and influential factors of reservoir. Furthermore, develop deepingly organic geochemistry comprehensive study, emphasis on two overlaps of oil source rock (ESI, ES3) organic geochemistry features, including types, maturity and spatial variations of organic matter to predict their source potential .Also apply biological marks to proceed oil-to-source correlation ,thereby establish bases for distribution of petroleum system. This study recover the oil generation history of oil source rocks, evaluate source and hydrocarbon discharge potential ,infer pool-forming stages and point out the accumulation direction as well as discover the forming relations of mature oil-source rock and oil reservoir and develop research to study dynamic features of petroleum system. Meanwhile use systematic view, integrate every feature and role of pool forming and the evolution history and pool-forming history, thereby lead people from static conditions such as oil source bed, reservoir, overlying formation, migration, trap and preservation to dynamically analyzing pool-forming process. Also divide GuNan-SanHeCun depression into two second petroleum system, firstly propose to divide second petroleum system according to fluid tress, structural axis and larger faults of cutting depression, and divide lower part of petroleum system into five secondary systems. Meanwhile establish layer analysis and quantitative prediction model of petroleum model, and do quantitative prediction to secondary petroleum system.
Resumo:
In this paper, the complex faulted-block oil reservoir of Xinzhen area in Dongying depression is systematically studied from basic conditions forming faulted-block oil and gas reservoir integrating geology, seismic, logging and reservoir engineering information and computer; guided by petroleum geology, geomechanics, structural geology and geophysics and other theories. Based on analysis of background condition such as regional strata, structure and petroleum geology, structural research on geometry, kinemaitcs and dynamics, oil-controlling fault research on the seal features, sealing mechanism and sealing pattern, and research on enrichment rules and controlling factors of complex faulted-block oil reservoir are carried out to give out the formation mechanics of oil reservoir of Xinzhen complex faulted-block oil reservoir. As a result, the reservoir formation pattern is established. At the same time, through dissecting the characteristics and hydrocarbon enrichment law of complex faulted-block oil reservoir, and studying its distribution law of remaining oil after entering extra high water-cut period, a set of technologies are formed to predict complex faulted-block oil reservoir and its remaining oil distribution and to enhance oil recovery (EOR). Based on the time relationship between migration of hydrocarbon and trap formation, accumulating period of Xinzhen oil reservoir is determined. The formation of Xinzhen anticlinal trap was prior to the primary migration. This is favorable to formation of Xinzhen anticlinal hydrocarbon reservoir. Meanwhile, because anticline top caving isn't at the sane time as that of moving or faulted-trap forming inner anticline, oil and gas migrated many times and Xinzhen complex faulted-block oil reservoir formed from ES_3~(upper) to EG. Accumulating law and controlling factors of complex faulted-block reservoir are analyzed from many aspects such as regional structure background controlling hydrocarbon accumulating, plastic arch-open structure controlling oil-bearing series and reservoir types, sealing-opening of fault controlling hydrocarbon distribution and structure pattern controlling enriched trap types. Also, we established the structure pattern in Xinzhen a'ea: the arch-open of underlying strata cause expanding fracture. The main block groups developed here are shovel-like normal fault block group in the north area of Xinzhen and its associated graben block group. Block groups dominate the formation and distribution of reservoirs. We studied qualitatively and quantitatively the sealing characteristics, sealing history and sealing mechanism of faults, too. And, the sealing characteristics are evaluated and the distribution pattern of hydrocarbon controlled by faults is researched. Due to movement intensity of big faults, deep falling of downthrown block, high degree of repture and development of fracture, shallow layers close to the downthrown block of secondary faults are unfavorable to hydrocarbon accumulation. This is confirmed by the exploration practice in Xinzhen anticline. In terms of the downthrown blocks of sencondary contemporaneous faults lied in the south and north area of Xinzhen, hydrocarbon is poor close to fracture belt, while it is relatively abundant in tertiary companion faults. Because of long-term movement of faults that control hydrocarbon, fi'om ES3 to EG, six set of oil-bearing series formed. And their opening causes the inhomogeneity in hydrocarbon abundance among each block--in two flanks of anticline reservoirs are abundant while in the axial area, oil and gas are sporadic. There the sealing characteristics control oil-bearing area of oil/gas accumulation and the height of oil reservoir. Longitudinally, oil and gas are enriched in dip-flat areas in mid-plane of faults. It is established that there are four types of accumulating patterns in complex faulted-block oil reservoirs in Xinzhen. The first is accumulating pattern of lithologic oil reservoirs in E~S_3~(mid-lowwer), that is, self-generating-self-reserving-self-covering lithologic trap pattern. The second is drag-anticline accumulating pattern in Xinzhen. The structure traps are drag anticlines formed by the contemporaneous faults of the second basement in the north of Xinzhen, and the multiple source rocks involve Ek_2, Es_4, Es_3 and Es_1 members. The reservoirs are fluvial-delta sandstones of the upper member of Shahejie formation and Guantao formation, covered by regional thick mudstone of the upper member of Guantao formation and MingHuazhen formation. The third is the accumulating pattern of reverse listric fault, the third-degree fault of Xinzhen anticline limb and the reservoirs form reservoir screened by reverse listric faults. The forth is accumulating pattern of crossing faults which form closing or semi-closing faulted-blocks that accumulate hydrocarbon. The technologies of predicting remaining oil in complex faulted-block reservoir during the mid and late development stage is formed. Remaining oil in simple large faulted-blocks enriches in structural high, structural middle, structural low of thick bottom water reservoirs, points near bent edge-fault oftertiary faults and part the fourth ones with big falling displacement, microstructure high place of oil-sandbodies and areas where local well pattern isn't perfect. While that in small complex faulted-blocks enriches near small nose, small high point, angle of small faults, small oil-bearing faulted-blocks without well and areas with non-perfect well pattern. The technologies of enhancing recovery factor in complex faulted-block reservoir during the mid and late development stage is formed as follows: fine reservoir description, drilling adjust wells, designing directional wells, sub-dividing layer series of development, improving flooding pattern, changing water-injection direction and enhancing swept volume, cyclic waterflooding and gas-injection, etc. Here, directional wells include directional deflecting wells, lateral-drilling wells, lateral-drilling horizontal wells and horizontal wells. The results of this paper have been used in exploration and development of Shengli oilfield, and have achieved great social and economic profit, especially in predicting distribution of complex faulted-block reservoir, remaining oil distribution during middle and late stage of development, and in EOR. Applying the achievement of fault-closure research, new hydrocarbon-bearing blocks are discovered in flanks of Dongying central uplift and in complex blocks with proved reserves 15 million tons. With the study of remaining oil distribution law in complex faulted-block reservoirs, recovery factors are increased greatly in Dongxin, Xianhe and Linpan complex faulted-block reservoirs and accumulated oil production increment is 3 million tons.
Resumo:
Kunyushan composite granite pluton is located in northeast part of the Sulu UHP collisional belt, Jiaodong peninsula, eastern China. It is regarded as the boundary of the Jiaodong block and the Sulu UHP collisional belt. The body is unique in the Dabieshan-Sulu UHP collisional orogen for its feature of multiple intrusions of diverse types granitoid rocks in a long span after UHP the collision between the North China and the Yangtze plates in late Triassic. It can be grouped into four series on the basis of petrology and petrochemistry. They are mid-K calc-alkaline granitoids, strongly peraluminous granites, high-K calc-alkaline granitoids and syenitic granite of shoshonitic series. In this thesis, the later three types of rocks are investigated geochronologically in detail. The grain zircon U-Pb isotope dilution dating technique has been employed in this study. Zircon morphology are presented and discussion on the chemical and physical conditions of the granite formation have been carried out in addtion. Strongly peraluminous granites comprises foliated monzogranite and garnet bearing leucogranite. They occupy more than half of the area of the Kunyushan composite body. Three zircon samples of foliated monzogranites have been analyzed, they yield lower intercept ages mainly in the range of 140-150 Ma. The formation of these rocks was likely to be at 700-600 ℃, implied by zircon morphology. Two zircon samples of the garnet bearing leucogranite yield lower intercept ages from 130 Ma to 140 Ma. Zircon morphology indicate that the liquidus temperature of the magma was about 750 °C. Syenitic granite of shoshonitic series occur in the north central part of the body, and the volume is quite small contrast to other types. One zircon sample was chosen from this rock, and yield lower intercept age of 121+1.8/-2.1 Ma. Zircon morphology indicate that the liquidus temperature of this rock is up to 900 °C, which is much higher than others'. High-K calc-alkaline granitoids can be divided into two types on the basis of rock texture and structure. One is Kf-porphyritic monzogranite. It's outcrop is quite small. Zircon ages of one sample constrain the emplacement of this rock at about 112 Ma. The other is medium-grain to coarse-grain monzogranite. Zircons from it yield lower intercept age of 100.5+2.9/-4.6 Ma. The variation of zircon morphology suggest that these two monzogranites were outcomes of a single magma at different stage. The former emplaced earlier than the latter. The liquidus temperature of the magma was about 800 ℃ Inherited zircon is ubiquitous in the Kunyushan composite body. Most of the samples yield upper intercept ages of late Proterozoic. It was considered that only the Yangtze plate underwent a crustal growth during late Proterozoic among the two plates which involved into the UHP collision. Inherited zircon of about 200 Ma can also be observed in strongly peraluminous and high-K calc-alkaline granitoids. Two samples out of eight yield upper intercept ages of Achaean.
Resumo:
To deal with some key problems in multi-component seismic exploration, some methods are introduced in this thesis based on reading amounts of papers about multi-component seismic theories and methods. First, to find a solution for the detection of the fracture density and orientation in igneous, carbonate and shale reservoirs, a large amount of which exist in domestic oil fields with low exploration and development degree, a new fast and slow shear waves separation method called Ratio Method based on S-wave splitting theory is discussed in this thesis, through which the anisotropy coefficient as well as fracture parameters such as density and azimuthal angle can be acquired. Another main point in this thesis involves the application of seismic velocity ratio (Vp/Vs) to predict the Hthological parameters of subsurface medium. To deal with the unfeasibility of velocity ratio calculation method based on time ratio due to the usually low single-noise ratio of S-wave seismic data acquired on land, a new method based on detailed velocity analysis is introduced. Third, pre-stack Kirchhoff integral migration is a new method developed in recent years, through which both S and P component seismic data as well as amplitude ratio of P/S waves can be acquired. In this thesis, the research on untilizing the P and S wave sections as well as amplitude ratio sections to interpret low-amplitude structures and lithological traps is carried out. The fast and slow shear wave separation method is then be applied respectively to detect the density and azimuthal angle of fractures in an igneous rock gas reservoir and the coal formation in a coal field. Two velocity ratio-calculating methods are applied respectively in the lithological prediction at the gas and coal field after summarizing a large amount of experimental results draw domestically and abroad. P and S wave sections as well as amplitude ratio sections are used to identify low-amplitude structures and lithological traps in the slope area of a oil-bearing sedimentary basin. The calculated data concerning fracture density and azimuthal angle through the introduced method matches well with the regional stress and actual drilling data. The predicted lithological data reflects the actual drilling data. Some of the low-amplitude and lithological traps determined by Kirchhoff migration method are verified by the actual drilling data. These results indicate that these methods are very meaningful when dealing with complex oil and gas reservoir, and can be applied in other areas.
Resumo:
The researches of the CC's form processing mainly involved the effects of all kinds of form properties. In most of the cases, the researches were conducted after the lexical process completed. A few which was about early phases of visual perception focused on the process of feature extraction in character recognition. Up till now, nobody put forward a propose that we should study the form processing in the early phases of visual perception of CC. We hold that because the form processing occurs in the early phases of visual perception, we should study the processing prelexically. Moreover, visual perception of CC is a course during which the CC becomes clear gradually, so that the effects of all kinds of form properties should not be a absolute phenomena of an all-or-none. In this study we adopted 4 methods to research the form processing in the early phases simulatedly and systematically, including the tachistoscopic repetition, increasing time to present gradually, enlarging the visual angle gradually and non- tachistoscopic searching and naming. Under all kinds of bad or degraded visual conditions, the instantaneous course of early-phases processing was slowed down and postponed, and then the growth course was open to before our eyes. We can captured the characteristics of the form processing in the early phases by analyzing the reaction speed and recognition accuracy. Accompanying the visual angle and time increasing, the clarity improved and we can find out the relation between the effects of form properties and visual clarity improving. The results were as follows: ①in the early phases of visual perception of CC, there were the effects of all kinds of form properties. ②the quantity of the effects would cut down when the visual conditions were being changed better and better. We raised the concept of character's space transparency and it's algorithm to explain these effects of form properties. Furthermore, a model was discussed to help understand the phenomenon that the quantity of the effects changed as the visual conditions were improved. ③The early phases of visual perception of CC isn't the loci of the frequency effect.