434 resultados para bidimensional electrophoresis
Resumo:
The p16 tumor suppressor gene is inactivated by promoter region hypermethylation in many types of tumor. Recent studies showed that aberrant methylation of the p16 gene is an early event in many tumors, especially in lung cancer, and may constitute a new biomarker for early detection and monitoring of prevention trials. We detected tumor-associated aberrant hypermethylation of the p16 gene in plasma and tissue DNA from 153 specimens using a modified semi-nested methylation-specific PCR (MSP) combining plastic microchip electrophoresis or slab gel electrophoresis, respectively. Specimens were from 79 lung cancer patients, 15 abdominal tumor patients, 30 positive controls and 30 negative controls. The results showed that the positive rate obtained by microchip electrophoresis was more than 26.6% higher and the same speciticity was kept when compared with slab gel electrophoresis. The microchip electrophoresis can rapidly and accurately analyze the PCR products of methylated DNA and obviously improve the positive rate of diagnosis of cancer patients when compared with gel electrophoresis. This method with the high assay sensitivity might be used for detection of methylation of p16 gene and even to facilitate early diagnosis of cancer patients. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An iminodiacetic acid (IDA)-type adsorbent is prepared at the one end of a capillary by covalently bonding IDA to the monolithic rods of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate). Cu(II) is later introduced to the support via the interaction with IDA. By this means, polymer monolithic immobilized metal affinity chromatography (IMAC) materials are prepared. With such a column, IMAC for on-line concentration and capillary electrophoresis (CE) for the subsequent analysis are hyphenated for the analysis of peptides and proteins. The reproducibility of such a column has been proved good with relative standard deviations (RSDs) of dead time of less than 5% for injection-to-injection and 12% for column-to-column (n = 3). Through application on the analysis of standard peptides and real protein samples, such a technique has shown promising in proteome study.
Resumo:
Ginseng is one of the most expensive Chinese herbal medicines and the effectiveness of ginseng depends strongly on its botanical sources and the use of different parts of the plants. In this study, a microchip electrophoresis method coupled with the polymerase chain reaction (PCR)-short tandem repeats (STR) technique was developed for rapid authentication of ginseng species. A low viscosity hydroxypropyl methylcellulose (HPMC) solution was used as the sieving matrix for separation of the amplified STR fragments. The allele sizing of the amplified PCR products could be detected within 240 s or less. Good reproducibility and accuracy of the fragment size were obtained with the relative standard deviation for the allele sizes less than 1.0% (n = 11). At two microsatellite loci (CT 12, CA 33), American ginseng had a different allele pattern on the electropherograms compared with that of the Oriental ginseng. Moreover, cultivated and wild American ginseng can be distinguished on the basis of allele sizing. This work establishes the feasibility of fast genetic authentication of ginseng species by use of microchip electrophoresis.
Resumo:
A microchip electrophoresis method coupled with laser-induced fluorescence (LIF) detection was established for simultaneous determination of two kinds of intracellular signaling molecules (reactive oxygen species, ROS, and reduced glutathione, GSH) related to apoptosis and oxidative stress. As the probe dihydrorhodamine-123 (DHR123) can be converted intracellularly by ROS to the fluorescent rhodamine-123 (Rh123), and the probe naphthalene-2,3-dicarboxaldehyde (NDA) can react quickly with GSH to produce a fluorescent adduct, rapid determination of Rh-123 and GSH was achieved on a glass microchip within 27 s using a 20 mm borate buffer (pH 9.2). The established method was tested to measure the intracellular ROS and GSH levels in acute promyelocytic leukemia (APL)-derived NB4 cells. An elevation of intracellular ROS and depletion of GSH were observed in apoptotic N134 cells induced by arsenic trioxide (AS(2)O(3)) at low concentration (1-2 mu m). Buthionine sulfoximine (BSO), in combination with AS(2)O(3) enhanced the decrease of reduced GSH to a great extent. The combined treatment of AS(2)O(3) and hydrogen peroxide (H2O2) led to an inverse relationship between the concentrations of ROS and GSH obtained, showing the proposed method can readily evaluate the generation of ROS, which occurs simultaneously with the consumption of the inherent antioxidant.
Resumo:
The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate/kappa-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2x10(6) (mol/L)(-1) and 3:1, respectively. However, the interaction between K-carrageenan oligosaccharide and G-CSF was not found.
Resumo:
A method based on capillary zone electrophoresis (CZE) was used to study the interaction between low molecular weight heparin (LMWH) and interleukin 2 (IL-2). The results showed that the increase of the concentration of LMWH led to the decrease of the peak height and the increase of the peak width of IL-2, but the peak areas were kept constant. The binding constant of IL-2 with LMWH was calculated as 1.2 x 10(6) M(-1) by Scatchard analysis, which is in good agreement with the results found in the references using enzyme-linked immunosorbent assay (ELISA). The results demonstrated that the interaction between IL-2 and LMWH is of fast on-and-off kinetic binding reaction. CZE might be used to study not only slow on-and-off rates interactions, but also fast on-and-off rates ones. The binding constant can be calculated easily, and the method can be applied to study a wide range of heparin-protein interactions. (c) 2005 Elsevier B.V. All rights reserved.