253 resultados para annealing algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid thermal annealing temperature dependence of the recrystallization, Yb migration and its optical activation were studied for Yb-implanted silicon. For the annealing regime 800-1000-degrees-C, the Yb segregates both at the crystal/amorphous interface and at the surface, which is different from the usual segregation of Er at the crystal/amorphous interface, and the efficiency of optical activation also increases with annealing temperature. However, the amorphous layer regrows completely and no photoluminescence is observed after the annealing at 1200-degrees-C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up to now, in most of the research work done on the effect of hydrogen on a Schottky barrier, the hydrogen was introduced into the semiconductor before metal deposition. This letter reports that hydrogen can be effectively introduced into the Schottky barriers (SBs) of Au/n-GaAs and Ti/n-GaAs by plasma hydrogen treatment (PHT) after metal deposition on [100] oriented n-GaAs substrates. The Schottky barrier height (SBH) of a SB containing hydrogen shows the zero/reverse bias annealing (ZBA/RBA) effect. ZBA makes the SBH decrease and RBA makes it increase. The variations in the SBHs are reversible. In order to obtain obvious ZBA/RBA effects, selection of the temperature for plasma hydrogen treatment is important, and it is indicated that 100-degrees-C for Au/n-GaAs and 150-degrees-C for Ti/n-GaAs are suitable temperatures. It is concluded from the analysis of experimental results that only the hydrogen located at or near the metal-semiconductor interface, rather than the hydrogen in the bulk of either the semiconductor or the metal, is responsible for the ZBA/RBA effect on SBH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular beam epitaxy GaAs films on Si, with thicknesses ranging from 0.9-2.0-mu-m, were implanted with Si ions at 1.2-2.6 MeV to doses in the range 10(15)-10(16) cm-2. Subsequent rapid infrared thermal annealing was carried out at 850-degrees-C for 15 s in a flowing N2 atmosphere. Crystalline quality was analyzed by using Rutherfold backscattering/channeling technique and Raman scattering spectrometry. The experimental results show that the recrystallization process greatly depends on the dose and energy of implanted ions. Complete recrystallization with better crystalline quality can be obtained under proper implantation and subsequent annealing. In the improved layer the defect density was much lower than in the as-grown layer, especially near the interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resistivity defect layer buried beneath the silicon surface layer by using proton implantation and two-step conventional furnace annealing is described. During the first annealing step (600-degrees-C), implanted hydrogen atoms move towards the damage region and then coalesce into hydrogen gas bubbles at the residual defect layer. During the second annealing step (1180-degrees-C) these bubbles do not move due to their large volume. Structural defects are formed around the bubbles at a depth of approximately 0.5-mu-m. The defect layer results in a high resistivity value. Experiments show that the quality of the surface layer has been improved because the surface Hall mobility increased by 20%. The sample was investigated by transmission electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of Co with Si and SiO2 during rapid thermal annealing has been investigated. Phase sequence, layer morphology, and reaction kinetics were studied by sheet resistance, x-ray diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy. With increasing annealing temperature, Co film on Si(100) is transformed sequentially into Co2Si, CoSi, and finally CoSi2 which corresponds to the minimum of sheet resistance. No evidence of silicide formation was observed for Co/SiO2 annealed even at the high temperature of 1050-degrees-C.