355 resultados para WT
Resumo:
A novel aliphatic polycarbonate from renewable resource was prepared by copolymerization of furfuryl glycidyl ether and CO2 using rare earth ternary catalyst; its number-average molecular weight (M-n) reached 13.3 x 10(4) g/mol. The furfuryl glycidyl ether and CO2 copolymer (PFGEC) was easy to become yellowish at ambient atmosphere due to post polymerization cross-linking reaction oil the furan ring; the gel content was 17.2 wt % after 24 h exposure to air at room temperature. PFGEC could be stabilized by addition of antioxidant 1010 (tetrakis[methylene (3.5-di(tert-butyl)-4-hydroxhydrocinnamate)]methane) in 0.5-3 wt % after copolymerization. The Diels-Alder (DA) reaction between N-phenylmaleimide and the pendant furan ring was also effective for the stabilization of PFGEC by reducing the amount of furan ring and introducing bulky groups into PFGEC. The cyclization degree could reach 72.1% when the molar ratio of N-phenylmaleimide to furan ring was 3: 1, and no gel was observed after 24 h exposure to air. The glass transition temperature (T-g) of PFGEC was 6.8 degrees C, and it increased to 40.3 degrees C after DA reaction (molar ratio of N-phenylmaleimide to furan ring was 3: 1).
Resumo:
Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) as a candidate material for thermal barrier coatings (TBCs) was prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, thermophysical properties, surface and cross-sectional morphologies and cyclic oxidation behavior of the LZ7C3 coating were studied. The results indicated that LZ7C3 has a high phase stability between 298 K and 1573 K, and its linear thermal expansion coefficient (TEC) is similar to that of zirconia containing 8 wt% yttria (8YSZ). The thermal conductivity of LZ7C3 is 0.87 W m(-1) K-1 at 1273 K, which is almost 60% lower than that of 8YSZ. The deviation of coating composition from the ingot can be overcome by the addition of excess CeO2 and ZrO2 during ingot preparation or by adjusting the process parameters.
Resumo:
Enhancing the stability of plasticized poly(L-lactic acid) (PLLA) with poly (ethylene glycol) (PEG) is necessary for its practical application. In this study, plasticized PLLA (PLLA/PEG 80/20 wt/wt) was crosslinked under I-ray (Co-60) in the presence of triallyl isocyanurate (TALC) as crosslinking agent. FTIR analysis revealed that PLLA, PEG, and TALC formed a cocrosslinking structure. Crystallization behavior and mechanical properties of the crosslinked plasticized PLLA were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and tensile tests. Experimental results indicated that the crystallization behaviors of both PEG and PLLA in the blends were restrained after irradiation. The melting peak of PEG in the crystallized samples disappeared at a low irradiation doses about 10 kGy. Although PLLA still owned the behavior of crystallize, its cold crystallization temperature and glass transition temperature shifted to higher temperature. Mechanical properties of the plasticized PLLA were strengthened through crosslinking. Both yield strength and elastic modulus of the samples increased after crosslinking.
Resumo:
采用熔融共混方法制备了聚乳酸与聚氧化乙烯的共混物.细致研究了重均分子量分别为2 kDa、10kDa1、00 kDa和600 kDa的聚氧化乙烯对聚乳酸的改性效果,并使用DSC、DMA及旋转流变仪等分析了共混物的相容性、热行为、力学性能和流变行为.结果表明,在聚氧化乙烯的组分含量不超过20 wt%的前提下,共混体系保持为完全相容体系,当聚氧化乙烯的分子量超过10 kDa时,其对聚乳酸的增塑效果,不随分子量增加而降低;增加聚氧化乙烯的分子量,可以提高材料的弹性模量和熔体强度.
Resumo:
An oxygen carrier was prepared by encapsulating carbonylated hemoglobin (CO-Hb) molecules into polypeptide vesicles made from poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) diblock copolymers in aqueous medium at pH 5.8. The encapsulation was confirmed by confocal laser scanning microscopy (CLSM). The morphology and size of the Vesicles were studied by field-emission scanning electron microscopy (ESEM). They had a spherical shape with it mean diameter of about 4 to 5 mu m. The encapsulation efficiency of hemoglobin was 40 wt %, and the hemoglobin content in the vesicles was 32 wt %. The CO-Hb encapsulated in the PLL-b-PPA vesicles was more stable than free CO-Hb under ambient conditions, In the presence of a O-2 atmosphere, the CO-Hb in the vesicle could be converted into oxygen-binding hemoglobin (O-2-Hb) under irradiation of visible light for 2 h. Therefore, the CO-Hb/PLL-b-PPA vesicles are expected to be used its red blood cell substitutes.
Resumo:
Bioactive SiO2-CaO-P2O5 gel (BAG) nanoparticles with 40 nm in diameter were synthesized by the sol-gel route and further modified via the ring-opening polymerization of lactide on the surface of particles. Surface modified BAG (mBAG) was introduced in poly(L-lactide) (PLLA) matrix as bioactive filler. The dispersibility of mBAG in PLLA matrix was much higher than that of rough BAG particles. Tensile strength of the mBAG/PLLA composite could be increased to 61.2 MPa at 2 wt% filler content from 53.4 MPa for pure PLLA. The variation of moduli of the BAG/PLLA and mBAG/PLLA composites always showed an enhancement tendency with the increasing content of filler loading. The SEM photographs of the fracture surfaces showed that mBAG could be homogeneously dispersed in the PLLA matrix, and the corrugated deformation could absorb the rupture energy effectively during the breaking of materials. In vitro bioactivity tests showed that both BAG and mBAG particles could endow the composites with ability of the calcium sediment in SBF, but the surface modification of BAG particles could weaken this capability to some extent. Biocompatibility tests showed that both BAG and mBAG particles could facilitate the attachment and proliferation of the marrow cells on the surface of the composite.
Resumo:
The ageing behavior of an extruded Mg-7Y-4Gd-0.5Zn-0.4Zr alloy during ageing at 250 degrees C has been investigated. Two types of phases have been observed during the ageing process. One is a lamellar phase with a 14H long periodic stacking structure, the other is the beta' phase with an ellipsoidal morphology. The increased mechanical properties of the peak-aged alloy are mainly ascribed to the presence of both of these phases at peak hardness.
Resumo:
Microstructures and mechanical properties of the Mg-8Gd-xZn-0.4Zr (x = 0, 1 and 3 wt.%) alloys in the as-cast, as-extruded and extruded-T5 conditions, have been investigated. The peak-aged Mg-8Gd-1Zn-0.4Zr alloy during isothermal ageing at 423 K acquires highest mechanical properties, with the highest ultimate tensile strength and yield tensile strength of 314 and 217 MPa, respectively. Addition of Zn has obvious effect on age hardening responses, especially for 1 wt.% Zn addition. It is due to a uniform distribution of beta' phase which can impede the movement of dislocations. However, addition of 3 wt.% Zn to the Mg-8Gd-0.4Zr alloy leads to a precipitation of Mg3Zn3Gd2 phase (W-phase). This phase is incoherent with interface of the matrix and becomes cores of the fracture in tensile test at room or elevated temperature.
Resumo:
Die cast AZ91-xYmm (x = 0-0.8 wt.%) magnesium alloys with excellent tensile properties and corrosion resistance behavior were successfully prepared by a simple addition of yttrium-rich misch metal (Ymm) to AZ91. Influences of Ymm on the microstructure, mechanical properties and corrosion behavior of AZ91 were investigated. The results showed that addition of Ymm to die cast AZ91 alloy could re. ne the microstructure including primary alpha-Mg and eutectic beta-Mg17Al12. When the content of Ymm reached 0.8 wt.% a small quantity of Al2Y phase would form. The tensile properties were improved greatly with addition of Ymm to AZ91. The creep rate of the AZ91-Ymm alloys, tested at 150 degrees C/50MPa, was one order of magnitude lower than that of AZ91. When addition of Ymm was more than 0.3 wt.%, the salt-spray corrosion resistance of AZ91-Ymm alloys could be 30-40 times of that of AZ91. The improvement of corrosion resistance with addition of Ymm was confirmed by the results of electrochemical polarization experiments. Mechanism of the improvement of mechanical properties and corrosion behavior caused by Ymm was also discussed.
Resumo:
Mg-4Al-0.4Mn-xPr (x = 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully by the high-pressure die-casting technique. The microstructures, mechanical properties, corrosion behavior as well as strengthening mechanism were investigated. The die-cast alloys were mainly composed of small equiaxed dendrites and the matrix. The fine rigid skin region was related to the high cooling rate and the aggregation of alloying elements, such as Pr. With the Pr content increasing, the alpha-Mg grain sizes were reduced gradually and the amounts of the Al2Pr phase and All, Pr-3 phase which mainly concentrated along the grain boundaries were increased and the relative volume ratio of above two phases was changed. Considering the performance-price ratio, the Pr content added around 4 wt.% was suitable to obtain the optimal mechanical properties which can keep well until 200 degrees C as well as good corrosion resistance. The outstanding mechanical properties were mainly attributed to the rigid casting surface layer, grain refinement, grain boundary strengthening obtained by an amount of precipitates as well as solid solution strengthening.
Resumo:
Microstructures and mechanical properties of the Mg-7Y-4Gd-xZn-0.4Zr (x = 0.5, 1.5, 3, and 5 wt.%) alloys in the as-cast, as-extruded, and peak-aged conditions have been investigated by using optical microscopy, scanning electron microscope, X-ray diffraction, and transmission electron microscopy. It is found that the peak-aged Mg-7Y-4Gd-1.5Zn-0.4Zr alloys have the highest strength after aging at 220 A degrees C. The highest ultimate tensile strength and yield tensile strength are 418 and 320 MPa, respectively. The addition of 1.5 wt.% Zn to the based alloys results in a greater aging effect and better mechanical properties at both room and elevated temperatures. The improved mechanical properties are mainly ascribed to both a fine beta' phase and a long periodic stacking-ordered structure, which coexist together in the peak-aged alloys.
Resumo:
Syndiotactic 1,2-polybutadiene (s-PB) is a typical thermoplastic elastomer with various applications because of its high reactivity. In the past, it is difficult to form s-PB fibers with a diameter below 10 mu m because of the limitation of the conventional method such as melt spinning. Here, we report for the first time on the production of s-PB nanofibers by using a simple electrospinning method. Ultrafine s-PB fibers without beads were electrospun from s-PB solutions in dichloromethane and characterized by environmental scanning electron microscope (ESEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). At 4 wt.% concentration of s-PB, the average diameter of s-PB was about 130 nm. We found that dichloromethane was a unique suitable solvent for the electrospinning of s-PB fibers, and the structure of syndiotactic was changed through the electrospinning process.
Resumo:
Nanocomposites based on poly(iminosebacoyl imino-decamethylene) (PA1010) and multiwall carbon nanotubes (MWNTs) were successfully prepared by melt blending technique. environmental scanning electron microscope micrographs of the fracture surfaces showed that not only is there an evenly dispersion of MWNTs throughout the PA1010 matrix but also a strongly interfacial adhesion with the matrix. The combined effect of more defects on MWNTs and low temperature buckling fracture is mainly responsible for the broken tubes. Differential scanning calorimeter results showed that the MWNTs acted as a nucleation agent and increased the crystallization rate and decreased crystallite size. In the linear region, rheological measurements showed a distinct change in the frequency dependence of storage modulus, loss modulus, and complex viscosity particularly at low frequencies. We conclude that the rheological percolation threshold might occur when the content of MWNTs is over 2 wt% in the composites.
Resumo:
A series of novel polyampholyte superabsorbent nanocomposites with excellent gel strength were synthesized by in situ solution polymerization in aqueous solution. Acrylic acid and acryloyloxyethyl trimethyl ammonium chloride (DAC) were employed as ionic monomers and montmorillonite (MMT) was used as inorganic component. The addition of cationic component could supply the positive charge in the network of nanocomposite and promote the formation of nanostructure of composites due to the interaction between DAC and clay platelets. The performance of polyampholyte nanocomposites were investigated and the result showed that the gel strength of nanocomposite hydrogel in distilled water and 0.9 wt% NaCl solution could reach 198.85 and 204.23 mJ/g, respectively, which were 13 times of the gel strength of matrix. The investigation of swelling behaviors showed that the nanocomposites had particular swelling behaviors of polyampholytes hydrogel in solution with different pH values and concentration of NaCl.
Resumo:
Dodecenly succinic anhydride (DDSA) starches were prepared commercially by the base catalyzed reaction of DDSA in pre-emulsion with starch granular in aqueous slurry. The results indicated that the degree of substitution and reaction efficiency were 0.0256% and 42.7%, respectively, at the parameters for the preparation of DDSA starches in starch slurry 30%, DDSA/starch radio 10% (wt/wt), pH 8.5-9.0, reaction temperature 313 K. After modification, product surface chemical composite had been changed which was prone to migrate into less polar solution. The chemical structural characteristics were investigated by methods of FTIR and H-1 NMR. The results of X-ray diffraction showed the native A-type crystalline pattern, indicating that reaction of corn starch with DDSA caused no change in the crystalline structure. Compared to native starch, the hydrophobic performance of esters was greatly increased. With the DS increasing, contact angles were gradually increased, however, the adhesion works were decreased. The maximum contact angle of DDSA starch could attend to 123 degrees, and the corresponding adhesion work was 33.2 mJ m(-2).