207 resultados para Variation génétique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the characteristics of the time and space scales of the eddies we established a quasi-static and quasi-geostrophic model to describe their variation and movement in shelf slope water. The analytical solution revealed the main properties of the variation: slow expansion and fast stagnation processes and the law of the eddy motion affected under the background field. All theoretical results are proved by satellite image measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research has defined the index of the Indian-Pacific thermodynamic anomaly joint mode (IPTAJM) and suggested that the winter IPTAJM has an important impact on summer rainfall over China. However, the possible causes for the interannual and decadal variability of the IPTAJM are still unclear. Therefore, this work investigates zonal displacements of both the western Pacific warm pool (WPWP) and the eastern Indian Ocean warm pool (EIOWP). The relationships between the WPWP and the EIOWP and the IPTAJM are each examined, and then the impacts of the zonal wind anomalies over the equatorial Pacific and Indian Oceans on the IPTAJM are studied. The WPWP eastern edge anomaly displays significant interannual and decadal variability and experienced a regime shift in about 1976 and 1998, whereas the EIOWP western edge exhibits only distinct interannual variability. The decadal variability of the IPTAJM may be mainly caused by both the zonal migration of the WPWP and the 850 hPa zonal wind anomaly over the central equatorial Pacific. On the other hand, the zonal migrations of both the WPWP and the EIOWP and the zonal wind anomalies over the central equatorial Pacific and the eastern equatorial Indian Ocean may be all responsible for the interannual variability of the IPTAJM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual variations of egg production rate (EPR) and clutch size of Calanus sinicus, as well as body size of females (prosome length and dry weight), were investigated at a series of stations in the Southern Yellow Sea by onboard incubation. Calanus sinicus was spawning in all the 11 cruises investigated, and the annual variation of EPR was bimodal. Monthly average EPR was highest from May to July, respectively, 5.97, 5.36 and 6.30 eggs female(-1) d(-1), then decreased dramatically to only 1.37 eggs female(-1) d(-1) in August and attained the lowest 1.07 eggs female(-1) d(-1) in October. In November, average EPR increased again to 4.31 eggs female(-1) d(-1). Seasonal variation of clutch size was similar to EPR, except that it decreased gradually after August rather than dramatically as did EPR. Prosome length of females was maximum in May and minimum in October, but dry weight was highest in November. Monthly average EPR correlated better with prosome length than dry weight, while clutch size was rather determined by dry weight of females. It is suggested that egg production of C. sinicus was active during two discontinuous periods when both surface and bottom temperature fell into its favorite range (i.e. 10-23degreesC), and different reproductive strategies were adopted in these two reproductive peaks: other than the highest EPR, longer prosome length was also achieved by C. sinicus from May to July, while females in November developed shorter bodies but accumulated more energy for reproduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight cruises were conducted on the south Yellow Sea (SYS) from 1998 to 2005. Variations and the potential ecological risk of heavy metals were studied using the survey data collected during October 2003. The metal content (except for As) was high in the central area where the fine grain size sediments were dominant, and low inshore area where more coarse sediments were present. This suggested that grain size was important in determining distributions of heavy metals. In some local areas, other influencing factors, such as organic content, sedimentation rate, burial efficiency and metal's existing form were discussed. The annual averages of metals showed a stable trend with appreciable fluctuations in 8 years. Using potential ecological risk index (E (RI)) to evaluate the integrated pollution effect of heavy metals, 38.7% of the investigated area was in a moderate degree of contamination, while 77.8% was under moderate ecological risk. However, no distinct correlation was found between E (RI) and plankton biomass. In conclusion, the sediment quality of SYS was good, and the ecological risk was low in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial distribution of stage-specific abundance and reproduction of the copepod Paracalanus parvus were studied from October 2005 to September 2006 in the Jiaozhou Bay. This copepod occurred continuously in this bay throughout the year. The species reached the lowest abundance in April and peaked in June. From October to December, distribution center mainly occurred in offshore water and at the mouth of the bay. In winter, early copepodites and adults gradually decreased and till February, most of the population was only comprised of CIV-CV stages. Overwintering copepodites matured in March and males tended to mature before female. From May to September, each stage occurred in the population and gradually reached high abundance. Temperature and chlorophyll a (Chl-a) concentration in the three stations can't clearly explain the seasonal variation in stage-specific abundance, so we surmised the important effect of the Yellow Sea. Egg production rate (EPR) reached its lowest in winter and peaked in June at 60.8 eggs female(-1) day(-1) in nearshore water. In the warming period, EPR in nearshore water was statistically higher and EPR > 10 eggs female(-1) day(-1) lasted longer than that in offshore water, showing the importance of nearshore water for recruitment of R parvus. Our study showed that EPR was positively related to temperature and total chlorophyll a in offshore water and mouth of the bay. In nearshore water, the relationships between EPR and temperature and Chl-a in three size fractions were not the same as those in offshore water, suggesting complicated ecosystem in such a eutrophic area in warming period. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rates of respiration and excretion of the Pacific oyster, Crassostrea gigas, were measured seasonally from June 2002 to July 2003 under ambient conditions of food, water temperature, pH, and salinity in Sanggou Bay, an important mariculture coast in north China. The aim of this study is to obtain fundamental data for further establishing an energy budget model and assessing the carrying capacity for cultivation of C. gigas in north China. Oysters were collected monthly or bimonthly from the integrated culture areas of bivalve and kelp in the bay. Oxygen consumption and ammonium and phosphorus excretion rates were measured, and ratios of O/N and NIP were calculated. One-way ANOVA was applied to determine differences among these parameters that act as a function of seasonal variation. All the physiological parameters yielded highly significant variations with season (P<0.01) The rate of respiration varied seasonally, with the highest oxygen consumption rate in July and the lowest rate in January, ranging from 0.07 to 2.13 mg O-2 h(-1) g(-1) dry tissue weight (DW). Maximum and minimum ammonium excretion rates were recorded in August and January, respectively, ranging from 0.51 to 5.40 mu mol NH4-N h(-1) g(-1) DW. Rates of phosphorus excretion varied from 0.11 (in January) to 0.64 (in July) mu mol PO4-P h(-1) g(-1) DW. The O/N and N/P ratios changed from 9.2 (in January) to 59.8 (in July) and from 4.6 (in January) to 10.9 (in August), respectively. For each season, the allometric relationship between the physiological response (e.g., rate of oxygen consumption, ammonium and phosphorus excretion) and DW of the animal was estimated using the formula: Y=a x DWb. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated how the high small-scale species richness of an alpine meadow on the Qinghai-Tibet Plateau, China, is maintained. This area is characterized by strong wind and severe cold during long winters. In winter, most livestock is grazed on dead leaves in small pastures near farmers' residences, whereas in the short summer, livestock is grazed in mountainous areas far from farmers' residences. The number of plant species and the aboveground biomass were surveyed for three adjacent pastures differing in grazing management: a late-winter grazing pasture grazed moderately from 1 February to 30 April, an early-winter grazing pasture grazed lightly from 20 September to late October, and a whole-year grazing pasture grazed intensively throughout the entire year. In each pasture, we harvested the aboveground biomass from 80 or 100 quadrats of 0.01 m(2) along a transect and classified the contents by species. We observed 15.5-19.7 species per 0.01 m(2), which is high richness per 0.01 m(2) on a worldwide scale. The species richness in the two winter grazing pastures was higher than that in the whole-year grazing pasture. The spatial variation in species richness and species composition in the two winter grazing pastures in which species richness was high was greater than that in the whole-year grazing pasture in which species richness was lower. Most of the leaves that are preserved on the winter grazing pastures during summer are blown away by strong winds during winter, and the remaining leaves are completely exhausted in winter by livestock grazing. A pasture with a high richess is accompanied by a high spatial variation in species richness and species composition. There is a high possibility that the characteristic of spatial variation is also caused by traditional grazing practices in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used random amplified polymorphic DNA markers (RAPDs) to assess genetic variation between- and within-populations of Anisodus tanguticus (Solanaceae), an endangered perennial endemic to the Qinghai-Tibetan Plateau with important medicinal value. We recorded a total of 92 amplified bands, using 12 RAPD primers, 76 of which (P = 82.61%) were polymorphic, and calculated values of H-t and H-sp of 0.3015 and 0.4459, respectively, suggesting a remarkably high rate of genetic variation at the species level. The average within-population diversity also appeared to be high, with P, H-e and H-pop values of 55.11%, 0.1948 and 0.2918, respectively. Analyses of molecular variance (AMOVA) showed that among- and between-population genetic variation accounted for 67.02% and 32.98% of the total genetic variation, respectively. In addition, Nei's coefficient of differentiation (G(ST)) was found to be high (0.35), confirming the relatively high level of genetic differentiation among the populations. These differentiation coefficients are higher than mean corresponding coefficients for outbreeding species, but lower than reported coefficients for some rare species from this region. The genetic structure of A. tanguticus has probably been shaped by its breeding attributes, biogeographic history and human impact due to collection for medicinal purposes. The observed genetic variations suggest that as many populations as possible should be considered in any planned in situ or ex situ conservation programs for this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we conducted eddy covariance (EC) measurements of water vapor exchange over a typical steppe in a semi-arid area of the Inner Mongolia Plateau, China. Measurement sites were located within a 25-year-old enclosure with a relatively low leaf area index (similar to 1. 5 m(2) m(-2)) and dominated by Leymus chinensis. Energy balance closure was (H + LE) = 17.09 + 0.69 x (Rn - G) (W/m(2); r(2) = 0.95, n = 6596). Precipitation during the two growing seasons of the study period was similar to the long-term average. The peak evapotranspiration in 2004 was 4 mm d(-1), and 3.5 mm d(-1) in 2003. The maximum latent heat flux was higher than the sensible heat flux, and the sensible heat flux dominated the energy budget at midday during the entire growing season in 2003; latent heat flux was the main consumption component for net radiation during the 2004 growing season. During periods of frozen soil in 2003 and 2004, the sensible heat flux was the primary consumption component for net radiation. The soil heat flux component was similar in 2003 and 2004. The decoupling coefficient (between 0.5 and 0.1) indicates that evapotranspiration was strongly controlled by saturation water vapor pressure deficit (VPD) in this grassland. The results of this research suggest that energy exchange and evapotranspiration were controlled by the phenology of the vegetation and soil water content. In addition, the amount and frequency of rainfall significantly affect energy exchange and evapotranspiration upon the Inner Mongolia plateau. (c) 2007 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeated cycles of retreat and recolonization during the Quaternary ice ages are thought to have greatly influenced current species distributions and their genetic diversity. It remains unclear how this climatic oscillation has affected the distribution of genetic diversity between populations of wind-pollinated conifers in the Qinghai-Tibetan region. In this study, we investigated the within-species genetic diversity and phylogenetic relationships of Picea likiangensis, a dominant forest species in this region using polymorphic DNA (RAPD) markers. Our results suggest that this species has high overall genetic diversity, with 85.42% of loci being polymorphic and an average expected heterozygosity (H (E)) of 0.239. However, there were relatively low levels of polymorphism at population levels and the differences between populations were not significant, with percentages of polymorphic bands (PPB) ranging from 46.88 to 69.76%, Nei's gene diversity (H (E)) from 0.179 to 0.289 and Shannon's indices (Hpop) from 0.267 to 0.421. In accordance with our proposed hypothesis, a high level of genetic differentiation among populations was detected based on Nei's genetic diversity (G (ST) = 0.256) and AMOVA analysis (Phi (st) = 0.236). Gene flow between populations was found to be limited (Nm = 1.4532) and far lower than reported for other conifer species with wide distribution ranges from other regions. No clusters corresponding to three morphological varieties found in the south, north and west, respectively, were detected in either UPGMA or PCO analyses. Our results suggest that this species may have had different refugia during the glacial stages in the southern region and that the northern variety may have multiple origins from these different refugia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swertia przewalskii Pissjauk. (Gentianaceae) is a critically endangered and endemic plant of the Qinghai-Tibet Plateau in China. RAPD and ISSR analyses were carried out on a total of 63 individuals to assess the extent of genetic variation in the remaining three populations. Percentage of polymorphic bands was 94% (156 bands) for RAPD and 96% (222 bands) for ISSR. A pairwise distance measure calculated from the RAPD and ISSR data was used as input for analysis of molecular variance (AMOVA). AMOVA indicated that a high proportion of the total genetic variation (52% for RAPD and 56% for ISSR) was found among populations; pairwise Phi(ST) comparisons showed that the three populations examined were significantly different (p < 0.001). Significant genetic differentiation was found based on different measures (AMOVA and Hickory theta(B)) in S. przewalskii (0.52 on RAPD and 0.56 on ISSR; 0.46 on RAPD and 0.45 on ISSR). The differentiation of the populations corresponded to low average gene flow (0.28 based on RAPD and 0.31 based on ISSR), whereas genetic distance-based clustering and coalescent-based assignment analyses revealed significant genetic isolation among populations. Our results indicate that genetic diversity is independent of population size. We conclude that although sexual reproduction and gene flow between populations of S. przewalskii are very limited, they have preserved high levels of genetic diversity. The main factors responsible for the high level of difference among populations are the isolation and recent fragmentation under human disturbance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete 1140 bp mitochondial cytochrome b sequences were obtained from 39 individuals representing five species of all four genera of highly specialized schizothoracine fishes distributed in the Qinghai-Tibet plateau. Sequence variation of the cytochrome b gene was surveyed among the 39 individuals as well as three primitive schizothoracines and one outgroup. Phylogenetic analysis suggested that the group assignment based on 1140 bp of the cytochrome b sequence is obviously; different from previous assignments, and the highly specialized schizothoracine fishes (Schizopygopsis pylzovi, Gymnocypris przewalskii, G. eckloni, Chuanchia lablosa, and Platypharodon extremus) form a monophyletic group that is sister to the clade formed by the primitive schizothoracine fishes (Schizothorax prenanti, S. pseudaksaiensis, and S. argentatus). The haplotypes of Schizopygopsis pylzovi and G. przewalskii were paraphyletic based on cytochrome b data, which most likely reflected incomplete sorting of mitochondrial DNA lineages. The diploid chromosome numbers of Schizofhoracinae were considered in phylogenetic analysis and provided a clear pattern of relationships. Molecular dating estimated for highly specialized schizothoracine fishes suggested that the highly specialized schizothoracine fishes diverged in the late Miocene Pliocene to Pleistocene (4.5x10(4)-4.05x10(6) Years BP). The relationship between the cladogenesis of highly specialized schizothoracine fishes and geographical events of the Qinghai-Tibet plateau is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition of the leaf oils from seven populations of J. sabina L., one population of Juniperus sabina var. arenaria (E. H. Wilson) Farjon were examined for their geographic variation. In addition, the leaf oils of J. chinensis L. and J. davurica Pall. were compared to J. sabina. Juniperus sabina var. arenarla, the sand loving juniper, oil was found to be very similar to that of J. davurica, Mongolia, and J. sabina, on sand dunes in Mongolia. This suggests that J. sabina var. arenaria might be conspecific with J. davurica. Farjon's move (2001) of J. sabina var. arenaria out of J. chinensis is supported. Considerable differentiation was found in populations of J. sabina from the Iberian peninsula. Cedrol, citronellol, safrole, trans-sabinyl acetate, terpinen-4-ol and beta-thujone were found to be polymorphic in several populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.