252 resultados para TL
Resumo:
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to identify cyclic(aryl ether ketone) oligomers, using 2,5-dihydroxybenzoic acid as a matrix, and Na+ and K+ as cationization agents, The existence of different ring-sized cyclic oligomers up to 9 and their distribution were determined and compared with GPC results, The results indicated that MALDI-TOF MS was a powerful and rapid analytical tool for the cyclic oligomers.
Resumo:
A numerical method to estimate temperature distribution during the cure of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based composite is suggested. The effect of the temperature distribution on the selection of cure cycle is evaluated using a suggested alternation criterion. The effect of varying heating rate and thickness on the temperature distribution, viscosity distribution and distribution of the extent of cure reaction are discussed based on the combination of the here-established temperature distribution model and the previously established curing kinetics model and chemorheological model. It is found that, for a thin composite (<=10mm) and low heating rate (<=2.5K/min), the effect of temperature distribution on cure cycle and on the processing window for pressure application can be neglected. Low heating rate is of benefit to reduce the temperature gradient. The processing window for pressure application becomes narrower with increasing thicknesses of composite sheets. The validity of the temperature distribution model and the modified processing window is evaluated through the characterization of mechanical and physical properties of E-PEK-based composite fabricated according to different temperature distribution conditions.
Resumo:
The curing temperature, pressure, and curing time have significant influence on finished thermosetting composite products. The time of pressure application is one of the most important processing parameters in the manufacture of a thermosetting composite. The determination of the time of pressure application relies on analysis of the viscosity variation of the polymer, associated with curing temperature and curing time. To determine it, the influence of the time of pressure application on the physical properties of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based continuous carbon fiber composite was studied. It was found that a stepwise temperature cure cycle is more suitable for manufacture of this composite. There are two viscosity valleys, in the case of the E-PEK system, associated with temperature during a stepwise cure cycle. The analysis on the effects of reinforcement fraction and defect content on the composite sheet quality indicates that the width-adjustable second viscosity valley provides a suitable pressing window. The viscosity, ranging from 400 to 1200 Pa . s at the second viscosity valley, is the optimal viscosity range for applying pressure to ensure appropriate resin flow during curing process, which enables one to get a finished composite with optimal fiber volume fraction and low void content. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Epoxy-terminated poly(phenylene ether ketone) (E-PEK) developed in this Institute is a candidate matrix resin for polymer composites as structural materials. Cure cycles for this reaction system were simulated according to the previously established processing model. It is found that for the E-PEK system, the curing process is best completed by a stepwise cure cycle comprising two isothermal processes at different temperatures, T-1 and T-2. The cure cycles over a wide range of processing parameters simulated, based on the established processing model, indicate that the processing window is width-adjustable. Analysis of the mechanical properties of the composite sheets showed that the simulated cure cycles are acceptable and reliable. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The curing reaction process of epoxy-terminated poly(phenylene ether ketone) (E-PEK) with 4,4'-diaminodiphenyl sulfone (DDS) and hexahydrophthalic acid anhydride (Nadic) as curing agents was investigated using isothermal differential scanning calorimetry (IDSC) and nonisothermal differential scanning calorimetry (DDSC) techniques. It was found that the curing reactions of E-PEK/DDS and E-PEK/Nadic are nth-order reactions but not autoaccelerating. The experimental results revealed that the curing reaction kinetics parameters measured from IDSC and DDSC are not equivalent. This means that, in the curing reaction kinetics model for our E-PEK system, both isothermal and nonisothermal reaction kinetics parameters are needed to describe isothermal and nonisothermal curing processes, The isothermal and nonisothermal curing processes were successfully simulated using this model. A new extrapolation method was suggested. On the basis of this method the maximum extent of the curing reaction (A(ult)) that is able to reach a certain temperature can be predicted. The A(ult) for the E-PEK system estimated by the new method agrees well with the results obtained from another procedure reported in the literature. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Chemorheology and corresponding models for an epoxy-terminated poly(phenylene ether ketone) (E-PEK) and 4,4'-diaminodiphenyl sulfone (DDS) system were investigated using a differential scanning calorimeter (DSC) and a cone-and-plate rheometer. For this system, the reported four-parameter chemorheological model and modified WLF chemorheological model can only be used in an isothermal or nonisothermal process, respectively. In order to predict the resin viscosity variation during a stepwise temperature cure cycle actually used, a new model based on the combination of the four-parameter model and the modified WLF model was developed. The combined model can predict the resin viscosity variation during a stepwise temperature cure cycle more accurately than the above two models. In order to simplify the establishment of this model, a new five-parameter chemorheological model was then developed. The parameters in this five-parameter model can be determined through very few rheology and DSC experiments. This model is practicable to describe the resin viscosity variation for isothermal, nonisothermal, or stepwise temperature cure cycles accurately. The five-parameter chemorheological model has also successfully been used in the E-PEK systems with two other curing agents, i.e., the diamine curing agent with the addition of a boron trifluride monoethylamine (BF3-MEA) accelerator and an anhydride curing agent (hexahydrophthalic acid anhydride). (C) 1997 John Wiley & Sons, Inc.
Resumo:
A series of macrocyclic arylate dimers have been selectively synthesized by an interfacial polycondensation of o-phthaloyldichloride with bisphenols. A combination of GPC, FAB-MS, H-1 and C-13 NMR unambiguously confirmed the cyclic nature. Although single-crystal X-ray analysis of two such macrocycles reveals no severe strain on the cyclic structures, these macrocycles can undergo facile melt polymerization to give high molecular weight polyarylates.
Resumo:
Blends of a liquid crystalline thermotropic copolyester (LCP70) and an amorphous phenolphthalein based poly(ether-ketone)(PEK-C) with two viscosities were prepared by melt blending. The blends' morphology, rheological and mechanical properties were investigated by DSC, SEM, mechanical and rheological tests. It was observed that the optimum composition of the PEK-C/LCP70 blend was 10 wt% LCP for both mechanical and rheological properties. When the LCP content was less than 10%, the LCP phase existed as finely dispersed fibrous domains with a diameter of about 1 mu m in the matrix, and both tensile and flexural properties were improved. In contrast, when the LCP content reached 20% or more, the LCP domains coalesced to ellipsoidal particles with a diameter of about 5 mu m, and the mechanical properties decreased as a result. It is demonstrated that pure PEK-C with a high viscosity which was difficult to process by melt extrusion, could be extruded conveniently when 10% LCP70 was incorporated. It is emphasized that LCP not only can be used as a reinforcing phase but also an effective processing agent for engineering thermoplastics, especially for those with high viscosity and narrow processing window. (C) 1997 Elsevier Science Ltd.
Resumo:
Macrocyclic arylene ether ketone dimer was isolated from a mixture of cyclic oligomers obtained by the nucleophilic substitution reaction of bisphenol A and 4,4'-difluorobenzophenone and easily polymerized to high molecular weight linear poly(ether ketone). The cyclic compound was characterized by FTIR, H-1- and C-13-NMR, and single-crystal x-ray diffraction. Analysis of the spectral and crystal structure reveals extreme distortions of he phenyl rings attached to the isopropylidene center and of the turning points of the molecular polygons. The release of the ring strain on ring-opening combined with entropical difference between the linear polymer chain and the more rigid macrocycle at temperatures of polymerization may be the proposed motivating factors in the polymerization of this precursor to high molecular weight poly(ether ketone). (C) 1997 John Wiley & Sons, Inc.
Resumo:
A series of new macrocyclic aromatic esters have been efficiently synthesized from o-phthaloyl dichloride and various bisphenols, and unambiguously characterized by a combination of GPC, MS(FAB), FTIR and NMR. These macrocyclic oligomers undergo facile ring-opening polymerization in the presence of anionic initiators to give high molecular weight polyarylates.
Resumo:
A series of macrocyclic arylate dimers have been efficiently synthesized by an interfacial polycondensation of o-phthaloyl dichloride with bisphenols. A combination of GPC, FAB MS, and H-1 and C-13 NMR unambiguously confirmed the cyclic nature. Although single-crystal X-ray analysis of one such macrocycle reveals no severe strain on the cyclic structure, these macrocycles can undergo facile melt polymerization to give high molecular weight polyarylates.
Resumo:
The gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane gases in a series of poly(aryl ether ketone)s was examined. These polymer membranes have a wide range of permeability coefficients and permselectivity coefficients, showing excellent gas-transport properties. The enhanced interchain interaction in the polymers due to intermolecular hydrogen bonds and ionic bonds results in a considerable increase in permselectivity but a decrease in permeability. On the contrary, the polymers with bulky arkyl substituents show significantly increased permeability. The causes of this trend are interpreted in terms of the free volume, interchain distance, and glass transition temperature together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest is the observation that the ionomer IMPEK-K+, which simultaneously contains bulky isopropyl substituents and pendant carboxylate groups, exhibits over twice higher CO2 permeability and 15% higher CO2/CH4 permselectivity than those of bisphenol-A p'olysulfone (PSF). The possibility of using the new synthesized poly(aryl ether ketone)s in gas separation membrane application is also discussed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Novel high glass transition temperature polyaryletherketones, containing pendant amido, alkyl, and carboxyl groups with reduced viscosity above 0.54 dL/g, were synthesized via solution nucleophilic polycondensation reaction of phenolphthalin, 2',2 ''-diisopropyl-5',5 ''-dimethylphenolphthalin, and 3,3'-bis(4-hydroxyphenyl)isobenzopyrrolidone with bis(4-nitrophenyl)ketone in the presence of potassium carbonate. By ion exchange with Na+ and K+, four ionomers were also prepared. A new monomer simultaneously containing carboxyl and algyl substituents was synthesized by reduction reaction of 2',2 ''-diisopropyl-5',5 ''-dimethyl-phenolphthalein. The resulting polymers were soluble in a few polar aprotic solvents; transparent, colorless, and tough films could easily be cast from DMF or DMSO solution. The mechanical properties of the films were excellent; and their tensile strength, elongation at break, and tensile moduli were in the range of 67.1-97.1 MPa, 7.8-165%, and 1.47-2.27 GPa, respectively. The prepared polymers showed fairly good thermal stability and resonably high glass transition temperatures above 210 degrees C. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The gas permeation properties of a series of cardo polyaryletherketone materials are reported, In this series, the hydrogen atoms of benzene rings on the backbone are systematically replaced with different alkyl substituents. The effects of temperature and structure variation on gas permeability and selectivity are discussed in detail. The experimental results revealed that the polyetherketone obtained by the introduction of dimethyl and diisopropyl substituents to phenolphthalein unit is 3 similar to 6 times more permeable than the unmodified one for the gases studied.