261 resultados para Spectroscopic - white dwarfs
Resumo:
By codoping blue and orange phosphorescent dyes into a single host material, a highly efficient white organic light-emitting diode (WOLED) with Commission Internationale de L'Eclairage coordinates of (0.38, 0.43) at 12 V is demonstrated. Remarkably, this WOLED achieves reduced current efficiency roll-off, which slightly decreases from its maximum value of 37.3-31.0 cd/A at 1000 cd/m(2). The device operational mechanism is subsequently investigated in order to unveil the origin of the high performance.
Resumo:
Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq(3)) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl- 1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L'Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages.
Resumo:
By utilizing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline:Li/MoO3 as an effective charge generation layer (CGL), we extend our recently demonstrated single-emitting-layer white organic light-emitting diode (WOLED) to realize an extremely high-efficiency tandem WOLED. This stacked device achieves maximum forward viewing current efficiency of 110.9 cd/A and external quantum efficiency of 43.3% at 1 mu A/cm(2) and emits stable white light with Commission Internationale de L'Eclairage coordinates of (0.34, 0.41) at 16 V. It is noted that the combination of effective single units and CGL is key prerequisite for realizing high-performance tandem WOLEDs.
Resumo:
A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.
Resumo:
Two simple triphenylamine/oxadiazole derivatives were synthesized and fully characterized; their multifunctionality as highly efficient non-doped blue fluorescence, excellent red phosphorescent host and single-doped two-color based white OLEDs has been demonstrated.
Resumo:
The diffusion of water in a phase-separated biodegradable poly(ester urethane) shape-memory polymer with poly(E-caprolactone) (PCL) as the soft segment was investigated using time-resolved FTIR-ATR. On the basis of the band fitting and water ordering in drawn films, the broad water band in the 3800-2800 cm(-1) region was decomposed into four bands located at 3620, 3510, 3400, and 3260 cm(-1), and the first two components at 3620 and 35 10 cm(-1) were assigned to the vibrations of antisymmetric and symmetric stretching of water hydrogen bonded with the C=O group of the soft segment. The other two were associated with water bonded to the urethane hard segments in the forms of N-H:O-H:O=C bridge hydrogen bond and double hydrogen bonds with two C=O groups, respectively. Furthermore, band fitting and two-dimensional correlation analyses revealed that in the diffusion process, water first diffuses into the continuous soft-rich PCL phase and then into the hard-rich urethane domains, forming double hydrogen bonds with two C=O groups prior to the bridge hydrogen bond in the form of N-H:O-H:O=C.
Resumo:
The Sr3Al2O5Cl2:Ce3+,Eu2+ phosphors were prepared by solid state reaction. The obtained phosphors exhibit a strong absorption in the UV-visible region and have two intense emission bands at 444 and 609 nm. The energy transfer from the Ce3+ to Eu2+ ions was observed, and the critical distance has been estimated to be about 24.5 A by spectral overlap method. Furthermore, the developed phosphors can generate lights from yellow-to-white region under the excitation of UV radiation by appropriately tuning the activator content, indicating that they have potential applications as an UV-convertible phosphor for white light emitting diodes.
Resumo:
In this paper, a microarray-based surface-enhanced Raman spectroscopic (SERS) assay for detection of kinase functionality and inhibition has been reported. Biotinylated anti-phosphoserinen antibodies mark the phosphorylation and inhibition events and gold nanoparticles are attached to the antibodies by standard avidin-biotin chemistry, followed by silver deposition for SERS signal enhancement. The avidin conjugated fluorescein is used as SERS probe. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP) dependent protein kinase (PKA), its well known substrate, kemptide, and three inhibitors, H89, HA1077, and KN62 have been chosen here to establish the SERS assay. As expected, highly selective inhibition of PKA is demonstrated with the inhibitor H89 and the inhibition assay enable to detect kinase inhibition as well as derive IC50 (half maximal inhibitory concentration) plots.
Resumo:
A series of block copolymers containing nonconjugated spacer and 3D pi-pi stacking structure with simultaneous blue-, green-, and yellow-emitting units has been synthesized and characterized. The dependence of the energy transfer and electroluminescence (EL) properties of these block copolymers on the contents of oligo(phenylenevinylene)s has been investigated. The block copolymer (GEO8-BEO-YEO4) with 98.8% blue-emitting oligomer (BEO), 0.8% green-emitting oligomer (GEO), and 0.4% yellow-emitting oligomer (YEO) showed the best electroluminescent performance, exhibiting a maximum luminance of 2309 cd/m(2) and efficiency of 0.34 cd/A. The single-layer-polymer light-emitting diodes device based on GEO2-BEO-YEO4 emitted greenish white light with the CIE coordinates of (0.26, 0.37) at 10 V. The synergetic effect of the efficient energy transfer and 3D pi-pi stack of these block copolymers on the photoiuminescent and electroluminescent properties are investigated.
Resumo:
CaIn2O4:xEu(3+) (x=0.5%,1.0%,1.5%) phosphors were prepared by the Pechini sol-gel process [U.S. Patent No. 3,330,697 (1967)] and characterized by x-ray diffraction and photoluminescence and cathodoluminescence spectra as well as lifetimes. Under the excitation of 397 nm ultraviolet light and low voltage electron beams, these phosphors show the emission lines of Eu3+ corresponding to D-5(0,1,2,3)-F-7(J) (J=0,1,2,3,4) transitions from 400 to 700 nm (whole visible spectral region) with comparable intensity, resulting in a white light emission with a quantum efficiency near 10%. The luminescence mechanism for Eu3+ in CaIn2O4 has been elucidated.
Resumo:
The conformational changes of bovine serum albumin (BSA) in the albumin:gold nanoparticle bioconjugates were investigated in detail by various spectroscopic techniques including UV-vis absorption, fluorescence, circular dichroism, and Fourier transform infrared spectroscopies. Our studies suggested that albumin in the bioconjugates that was prepared by the common adsorption method underwent substantial conformational changes at both secondary and tertiary structure levels. BSA was found to adopt a more flexible conformational state on the boundary surface of gold nanoparticles as a result of the conformational changes in the bioconjugates. The conformational changes at pH 3.8, 7.0, and 9.0, which corresponded to different isomeric forms of albumin, were investigated, respectively, to probe the pH effect on the conformational changes of BSA in the bioconjugates. The results showed that the pH of the medium influenced the changes greatly and that fluorescence and circular dichroism studies further indicated that the changes were larger at higher pH.
Resumo:
Efficient multilayer white polymer light-emitting diodes (WPLEDs) with aluminum cathodes are fabricated. The multilayer structure is composed of a water soluble hole-injection layer, a toluene-soluble emissive layer, and an alcohol-soluble emissive layer. The polarity difference of the solvents used for spin coating these polymers allows for realization of the multilayer polymer structure. The recombination zone confined at the interface of the two emissive polymers avoids exciton quenching by electrodes, and white emission is realized by harvesting photons emitted from the two emissive polymers. A maximum luminous efficiency of 16.9 cd/A and a power efficiency of 11.1 lm/W are achieved for this WPLED.
Resumo:
The synthesis and photophysical studies of several multifunctional phosphorescent iridium(III) cyclometalated complexes consisting of the hole-transporting carbazole and fluorene-based 2-phenylpyridine moieties are reported. All of them are isolated as thermally and morphological stable amorphous solids. Extension of the pi-conjugation through incorporation of electron- pushing carbazole units to the fluorene fragment leads to bathochromic shifts in the emission profile, increases the highest oc- cupied molecular orbital levels and improves the charge balance in the resulting complexes because of the propensity of the carbazole unit to facilitate hole transport. These iridium-based triplet emitters give a strong orange phosphorescence light at room temperature with relatively short lifetimes in the solution phase. The photo- and electroluminescence properties of these phosphorescent carbazolylfluorene-functionalized metalated complexes have been studied in terms of the coordinating position of carbazole to the fluorene unit. Organic light-emitting diodes (OLEDs) using these complexes as the solution-processed emissive layers have been fabricated which show very high efficiencies even without the need for the typical hole-transporting layer.I These orange-emitting devices can produce a maximum current efficiency of similar to 30 cd A(-1) corresponding to an external quantum efficiency of similar to 10 % ph/el (photons per electron) and a power efficiency of similar to 14 Im W-1.
Resumo:
Nanocrystals of KMgF3 single-doped and codoped with Ce3+ or/and Yb3+ were synthesized separately by the microemulsion method. The X-ray diffraction(XRD) patterns were indexed to show that the KMgF, crystal system was unchanged. The fluorescent spectra of KMgF3:Ce, Yb polycrystal powders were studied and compared with those of the Ce, Yb doped KMgF3 crystals produced using the high-temperature solid phase method. The diffuse reflection spectra and infrared. emission of KMgF3:Ce, Yb were investigated. From the results, the authors could confirm that there were charge transfer processes from Ce3+ to Yb3+ in both KMgF3: Ce,Yb nanocrystals and polycrystal powders.