389 resultados para Reversible oxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel dissolving process for chitin and chitosan has been developed by using the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim]Cl) as a solvent, and a novel application of chitin and chitosan as substitutes for amino-functionalized synthetic polymers for capturing and releasing CO2 has also been exploited based on this processing strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A responsive polymer composite film was generated by the use of reversibly switchable Surface morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films in response to different block selective solvents on the rough isotactic poly(propylene) (i-PP) substrate. The Maximum difference of the water contact angle of the composite films increased from 22.6 degrees of PS-b-PMMA films on the smooth substrate to 42.6 degrees when they were treated by PS and PMMA selective solvents, respectively. The mechanisms of the responsive extent enhanced and the superhydrophobicity of the composite films were discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reversible addition-fragmentation chain transfer polymerization has been successfully applied to polymerize acrylonitrile with dibenzyl trithiocarbonate as the chain-transfer agent. The key to success is ascribed to the improvement of the interchange frequency between dormant and active species through the reduction of the activation energy for the fragmentation of the intermediate. The influence of several experimental parameters, such as the molar ratio of the chain-transfer agent to the initiator [azobis(isobutyronitrile)], the molar ratio of the monomer to the chain-transfer agent, and the monomer concentration, on the polymerization kinetics and the molecular weight as well as the polydispersity has been investigated in detail. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and H-1 NMR analyses have confirmed the chain-end functionality of the resultant polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanned probe oxidation (SPO) nanolithography has been performed with an atomic force microscope (AFM) on an octadecyl-terminated silicon (111) surface to create protuberant oxide line patterns under ambient conditions in contact mode. The kinetic investigations of this SPO process indicate that the oxide line height increases linearly with applied voltage and decreases logarithmically with writing, speed. The oxide line width also tends to vary with the same law. The ambient humidity and the AFM tip state can remarkably influence this process, too. As compared with traditional octadecylsilated SiO2/Si substrate, such a substrate can guarantee the SPO with an obviously lowered voltage and a greatly increased writing speed. This study demonstrates that such alkylated silicon is a promising silicon-based substrate material for SPO nanolithography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organic sol method for preparing ultrafine transition metal colloid particles reported for the first time by Bonnemann et al. [H. Bonnemann, W Brijoux, R. Brinkmann, E. Dinjus, T. Jou beta en, B. Korall, Angew. Chem. Int. Ed. Engl., 30 (1991) 1312] has been improved in this paper. The improved organic sol method uses SnCl2 as the reductant and methanol as the organic solvent. Thus, this method is very simple and inexpensive. It was found that the average size of the Pt particles in the Pt/C catalysts can be controlled by adjusting the evaporating temperature of the solvent. Therefore, the Pt/C catalysts prepared by the same method are suitable for evaluating the size effect of the Pt particles on electrocatalytic performance for methanol oxidation. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that when the evaporating temperatures of the solvent are 65, 60, 50, 40, and 30 degrees C, the average sizes of the Pt particles in the Pt/C catalysts prepared are: 2.2, 3.2, 3.8, 4.3, and 4.8 nm, respectively. The X-ray photoelectron spectroscopic (XPS) results demonstrated that the small Pt particles are easily oxidized and the decomposition/adsorption of methanol cannot proceed on the surfaces of Pt oxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of metal cations in solution on the oxidation of methanol on the electrode surface of platinum is a neglected aspect to direct methanol fuel cell (DMFC). In this paper, a smooth platinum electrode absorbing metal cations as the working electrode was applied to investigate the methanol oxidation with the cyclic voltammetry (CV) in 1.0 mol L-1 H2SO4. From the analysis of experiment, it is found that the cations, Li+, Ce4+, Mn2+, Ni2+, Cu2+, have some negative effect on the catalytic oxidation of methanol on the surface of platinum. The degree of the effect from different cations was analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, it was reported that the carbon-supported Pt-Ru(Pt-Ru/C) catalyst used as the anodic catalyst in the direct methanol fuel cell (DMFC) was synthesized with a two-step spray pyrolysis (SP) method using the Pt and Ru metal salt as the precursors and polyethylene glycol (PEG) with the different molecular weights (Mw= 200,600,and 1000 analytical reagent) as cosolvent. PEG as a cosolvent plays a crucial role in producing PtRu/C catalysts. It was found that the Mw of PEG could affect the electrocatalytic activity of Pt-Ru and the morphology of the Pt-Ru particles in the Pt-Ru/C catalysts prepared with this method. When the Mw of PEG is 600, the Pt-Ru particles in the Pt-Ru/C catalyst prepared with this method possess the small average size, narrow size distribution, uniform dispersion, and high electrochemically active specific surface area. The electrocatalytic activity of the Pt-Ru/C catalyst prepared with this method using the cosolvent PEG with Mw = 600 for the methanol oxidation is much higher than that of the commercial E-TEK Pt-Ru/C catalyst. Therefore, the two-step SP method is an excellent method for the preparation of the Pt-Ru/C catalyst used in DMFCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of crystals of phenyl-capped tetraaniline in the leucoemeraldine oxidation state were obtained at different isothermal temperatures and were observed directly under transmission electron microscope. The crystals obtained at higher temperatures exhibit more perfect structures than those obtained at lower temperatures. Both the lamella thickness and the crystal size increase with crystallization temperature. The tetraaniline is apt to form larger scale crystals under lower degree of supercooling. However, their crystal structures keep steady with the crystallization temperature. The tetramer was found to adopt a monoclinic lattice with unit cell parameter of a = 13.93 angstrom, b = 8.82 angstrom, c = 23.20 angstrom, and beta = 95.03 degrees, as determined using electron diffraction tilting method combined with wide-angle X-ray diffraction experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solid catalyst manganese pyrophosphate based on non-sieves to oxidize benzene to phenol with oxidant hydrogen peroxide has shown good conversion with good selectivity in CH3CN at 65 degrees C investigating water contact angle data of three manganese salts, it is found manganese pyrophosphate has certain repulsive water character. It is further to be confirmed by benzene and phenol adsorption experiments onto catalyst surface by GC. With benzene/H2O2 ratio of 1, the benzene conversion of 13.8% with phenol selectivity of 85.0% was achieved. It is noteworthy that no any products are obtained using manganese pyrophosphate as catalyst in the oxidation of phenol in CH3CN solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CH4 and CO oxidation reaction on perovskite-like oxides La2-xSrxMO4 (0.01 <= x <= 1.0; M = Cu, Ni) was investigated from cyclic voltammetry method, finding that for suprafacial CO oxidation reaction, the catalyst activity has a close correlation to the area of redox peaks measured in the cyclic voltammetry, the larger the peak area is, the higher the activity will be, while for interfacial CH4 oxidation reaction, the activity depends mainly on the difference in redox potentials (Delta E), and the smaller the difference in redox potentials is, the higher the activity will be.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic reactions with different oxidation process were investigated and correlated to the electrochemical properties of the catalysts. The activity of suprafacial reaction is closely related to the area of redox peak, while that of the intrafacial one is to the match of redox potentials. Accordingly, it is supposed that cyclic voltammetry (CV) measurement could be a means for predicting the oxidation process in heterogeneous catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternate layer-by-layer (L-by-L) polyion adsorption onto gold electrodes coated with chemisorbed cysteamine gave stable, electroactive multilayer films containing calf thymus double stranded DNA (CT ds-DNA) and myoglobin (Mb). Direct, quasi-reversible electron exchange between gold electrodes and proteins involved the Mb heme Fe2+/Fe3+ redox couple. The formation of L-by-L (DNA/Mb), films was characterized by both in situ surface plasmon resonance (SPR) monitoring and cyclic voltammetry (CV). The effective thickness of DNA and Mb monolayers in the (DNA/Mb)l bilayer were 1.0 +/- 0.1 and 2.5 +/- 0.1 mn, corresponding to the surface coverage of similar to65% and similar to89% of its full packed monolayer, respectively. A linear increase of film thickness with increasing number of layers was confirmed by SPR characterizations. At pH 5.5, the electroactive Mb in films are those closest to the electrode surface; additional protein layers did not communicate with the electrode. CV studies showed that electrical communication might occur through hopping conduction via the electrode/base pair/Mb channel, thanks to the DNA-Mb interaction. After the uptake of Zn2+, a special electrochemical behavior, where MbFe(2+) acts as a DNA-binding reduction catalyst in the Zn2+-DNA/Mb assembly, takes place.