216 resultados para Qinghai-Tibet railway
Resumo:
Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.
Resumo:
A simple and sensitive method for the determination of free fatty acids (FFAs) using acridone-9-ethyl-p-toluenesulfonate (AETS) as a fluorescence derivatization reagent by high performance liquid chromatography (HPLC) has been developed. Free fatty acid derivatives were separated on an Eclipse XDB-C-8 column with a good baseline resolution and detected with the fluorescence of which excitation and emission wavelengths of derivatives were set at lambda(ex) 404 and lambda(em) 440 nm, respectively. Identification of 19 fatty acid derivatives was carried out by online post-column mass spectrometry with an atmospheric pressure chemical ionization (APCI) source under positive-ion detection mode. Nineteen FFAs from the extract of Lomatogonium rotatum are sensitively determined. The results indicate that the plant Lomatogonium rotatum is enriched with an abundance of FFAs and FFAs of higher contents, which mainly focus on even carbon atoms, C-14, C-16, and C-18. The validation of the method including linearity, repeatability, and detection limits was examined. Most linear correlation coefficients for fatty acid derivatives are > 0.9989, and detection limits (at signal-to-noise of 3: 1) are 12.3-43.7 fmol. The relative standard deviations (RSDs) of the peak areas and retention times for 19 FFAs standards are < 2.24% and 0.45%, respectively. The established method is rapid and reproducible for the separation determination of FFAs from the extract of Lomatogonium rotatum with satisfactory results.
Resumo:
Survival of small mammals in winter requires proper adjustments in physiology, behavior and morphology. The present study was designed to examine the changes in serum leptin concentration and the molecular basis of thermogenesis in seasonally acclimatized root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. In January root voles had lower body mass and body fat mass coupled with higher nonshivering thermogenesis (NST) capacity. Consistently, cytochrome c oxidase activity and mitochondrial uncoupling protein-1 (UCP1) protein contents in brown adipose tissues were higher in January as compared to that in July. Circulating level of serum leptin was significantly lower in winter and higher in July. Correlation analysis showed that serum leptin levels were positively related with body mass and body fat mass while negatively correlated with UCP1 protein contents. Together, these data provided further evidence for our previous findings that root voles from the Qinghai-Tibetan plateau mainly depend on higher NST coupled with lower body mass to enhance winter survival. Further, fat deposition was significantly mobilized in cold winter and leptin was potentially involved in the regulation of body mass and thermogenesis in root voles. Serum leptin might act as a starvation signal in winter and satiety signal in summer.
Resumo:
Adaptation to hypoxia is regulated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor consisting of an oxygen-regulated a-subunit and a constitutively expressed beta-subunit. How animals living on Qinghai-Tibetan plateau adapt to the extreme hypoxia environment is known indistinctly. In this study, the Qinghai yak which has been living at 3000-5000 m attitude for at least two millions of years was selected as the model of high hypoxia-tolerant adaptation species. The HIF-1 alpha ORFs (open reading frames) encoding for two isoforms of HIF-1 alpha have been cloned from the brain of the domestic yak. Its expression of HIF-1 alpha was analyzed at both mRNA and protein levels in various tissues. Both its HIF-1 alpha mRNA and protein are tissue specific expression. Its HIF-1 alpha protein's high expression in the brain, lung, and kidney showed us that HIF-1 alpha protein may play an important role in the adaptation to hypoxia environment. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Quantification of areal evapotranspiration from remote sensing data requires the determination of surface energy balance components with support of field observations. Much attention should be given to spatial resolution sensitivity to the physics of surface heterogeneity. Using the Priestley-Taylor model, we generated evapotranspiration maps at several spatial resolutions for a heterogeneous area at Haibei, and validated the evapotranspiration maps with the flux tower data. The results suggested that the mean values for all evapotranspiration maps were quite similar but their standard deviations decreased with the coarsening of spatial resolution. When the resolution transcended about 480 m, the standard deviations drastically decreased, indicating a loss of spatial structure information of the original resolution evapotranspiration map. The absolute values of relative errors of the points for evapotranspiration maps showed a fluctuant trend as spatial resolution of input parameter data layers coarsening, and the absolute value of relative errors reached minimum when pixel size of map matched up to measuring scale of eddy covariance system. Finally, based on the analyses of the semi-variogram of the original resolution evapotranspiration map and the shapes of spatial autocorrelation indices of Moran and Geary for evapotranspiration maps at different resolutions, an appropriate resolution was suggested for the areal evapotranspiration simulation in this study area.
Resumo:
Three years of eddy covariance measurements were used to characterize the seasonal and interannual variability of the CO2 fluxes above an alpine meadow (3250 m a.s.l.) on the Qinghai-Tibetan Plateau, China. This alpine meadow was a weak sink for atmospheric CO2, with a net ecosystem production (NEP) of 78.5, 91.7, and 192.5 g C m(-2) yr(-1) in 2002, 2003, and 2004, respectively. The prominent, high NEP in 2004 resulted from the combination of high gross primary production (GPP) and low ecosystem respiration (R-e) during the growing season. The period of net absorption of CO2 in 2004, 179 days, was 10 days longer than that in 2002 and 5 days longer than that in 2003. Moreover, the date on which the mean air temperature first exceeded 5.0 degrees C was 10 days earlier in 2004 (DOY110) than in 2002 or 2003. This date agrees well with that on which the green aboveground biomass (Green AGB) started to increase. The relationship between light-use efficiency and Green AGB was similar among the three years. In 2002, however, earlier senescence possibly caused low autumn GPP, and thus the annual NEP, to be lower. The low summertime R-e in 2004 was apparently caused by lower soil temperatures and the relatively lower temperature dependence of R-e in comparison with the other years. These results suggest that (1) the Qinghai-Tibetan Plateau plays a potentially significant role in global carbon sequestration, because alpine meadow covers about one-third of this vast plateau, and (2) the annual NEP in the alpine meadow was comprehensively controlled by the temperature environment, including its effect on biomass growth.
Resumo:
To initially characterize the dynamics and environmental controls of CO2, ecosystem CO2 fluxes were measured for different vegetation zones in a deep-water wetland on the Qinghai-Tibetan Plateau during the growing season of 2002. Four zones of vegetation along a gradient from shallow to deep water were dominated, respectively by the emergent species Carex allivescens V. Krez., Scirpus distigmaticus L., Hippuris vulgaris L., and the submerged species Potamogeton pectinatus L. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) were markedly different among the vegetation zones, with lower Re and GPP in deeper water. NEP was highest in the Scirpus-dominated zone with moderate water depth, but lowest in the Potamogeton-zone that occupied approximately 75% of the total wetland area. Diurnal variation in CO2 flux was highly correlated with variation in light intensity and soil temperature. The relationship between CO2 flux and these environmental variables varied among the vegetation zones. Seasonal CO2 fluxes, including GPP, Re, and NEP, were strongly correlated with aboveground biomass, which was in turn determined by water depth. In the early growing season, temperature sensitivity (Q(10)) for Re varied from 6.0 to 8.9 depending on vegetation zone. Q(10) decreased in the late growing season. Estimated NEP for the whole deep-water wetland over the growing season was 24 g C m(-2). Our results suggest that water depth is the major environmental control of seasonal variation in CO2 flux, whereas photosynthetic photon flux density (PPFD) controls diurnal dynamics.
Resumo:
Six domestic yaks aged 6 years, comprising three culling male and three culling female yaks, from the Qinghai Lake area and three male semi-wild yaks aged 6 months from Datong Yak Farm were used to detect the levels of amino acids, mineral elements, residual heavy metals and pesticides in yak meat. The results showed that there was little difference in amino acid levels for different types of yak by age and sex. The meat of the adult male yak was 7.35 mg/kg higher in calcium (P < 0.05) and 124 mg/kg higher in phosphorus (P < 0.01) than that of the adult female yak. There was an obvious difference in zinc content, and there was also a significant difference for copper and sulfur between adult male and female yaks (P < 0.01). Iron was 8.85 mg/kg higher in semi-wild yaks than in domestic yaks, but there were no differences for other minerals. The levels of residual heavy metals and residual pesticides were well within those allowed by the National Standard of China. Furthermore, the data showed that introducing wild yak's blood did not result in a quality change in the domestic yak meat. Yak meat from Qinghai Plateau has the characteristics of being non-polluted and rich in amino acids in comparison with local yellow cattle meat.
Resumo:
The meadow ecosystem on the Qinghai-Tibetan Plateau is considered to be sensitive to climate change. An understanding of the alpine meadow ecosystem is therefore important for predicting the response of ecosystems to climate change. In this study, we use the coefficients of variation (Cv) and stability (E) obtained from the Haibei Alpine Meadow Ecosystem Research Station to characterize the ecosystem stability. The results suggest that the net primary production of the alpine meadow ecosystem was more stable (Cv = 13.18%) than annual precipitation (Cv = 16.55%) and annual mean air temperature (Cv= 28.82%). The net primary production was insensitive to either the precipitation (E = 0.0782) or air temperature (E = 0.1113). In summary, the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is much stable. Comparison of alpine meadow ecosystem stability with other five natural grassland ecosystems in Israel and southern African indicates that the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is the most stable ecosystem. The alpine meadow ecosystem with relatively simple structure has high stability, which indicates that community stability is not only correlated with biodiversity and community complicity but also with environmental stability. An average oscillation cycles of 3-4 years existed in annual precipitation, annual mean air temperature, net primary production and the population size of consumers at the Haibei natural ecosystem. The high stability of the alpine meadow ecosystem may be resulting also from the adaptation of the ecosystem to the alpine environment.
Resumo:
Forty-five male yaks (born April 2001) were studied to determine how seasonal changes on the Qinghai-Tibetan plateau affected BW and body composition. Thirty yaks were weighed monthly from birth to 26 mo of age to determine seasonal changes in BW. The remaining 15 yaks were allocated randomly to five groups (three yaks per group), designated for slaughter at 13, 15, 18, 22, and 25 mo to measure seasonal effects on body chemical composition. All yaks were grazed on the alpine-meadow grassland of the plateau without any supplementation. All BW and body composition data were calculated on an individual basis. Body weight and body composition data were both compared across seven growth periods spanning 2 yr and defined by season. From April (birth) to December 2001 of the first growing season, yak BW increased (P < 0.01); however, during the subsequent cold season (December 2001 to May 2002), BW decreased (P < 0.01). The second growing season ran from May 2002 (13 mo of age) to October 2002 (18 mo of age), and the second live weight-loss season ran from October 2002 until May 2003. The weight loss experienced by yaks during the first weight loss season was 25.64% of the total weight gain in the first growing season. The weight loss experienced by yaks during the second weight-loss season was 29.73% of the total weight gain in the second growing season. Energy retention in the second growing season was 291.07 MJ, 50.8% of which was consumed during the subsequent cold season. Energy accumulation in the summer (from May to July) and fall (from July to October) of the second growing season did not differ (5.01 and 6.30 MJ/kg of EBW gain, respectively; P = 0.63). The energy mobilized during the second winter (from October 2002 to February 2003) was 16.49 MJ/kg of EBW, and in the second spring (from February to May 2003), it was 9.06 MJ/kg of EBW. These data suggest that the decrease in grazing yak BW during the first cold season is much less than during the second cold season, and that the energy content per unit of BW mobilized is greater (P = 0.02) in winter than in spring. Results from this study demonstrate highly efficient compensatory growth in grazing yaks following the first weight loss period during the first cold season. This benefit could be exploited by herders to improve yak production. Yaks may have developed a type of self-protection mechanism to overcome the long cold seasons in the Qinghai-Tibetan plateau.
Resumo:
Although respiration of organisms and biomass as well as fossil fuel burning industrial production are identified as the major sources, the CO2 flux is still unclear due to the lack of proper measurements. A mass-balance approach that exploits differences in the carbon isotopic signature (delta(13)C) of CO2 Sources and sinks was introduced and may provide a means of reducing uncertainties in the atmospheric budget. delta(13)C measurements of atmospheric CO2 yielded an average of - 10.3 parts per thousand relative to the Peedee Belemnite standard; soil and plants had a narrow range from -25.09 parts per thousand to -26.51 parts per thousand and averaged at -25.80 parts per thousand. Based on the fact of steady fractionation and enrichment during respiration of mitochondria, we obtained the emission Of CO2 of 35.451 mol m(-2) a(-1) and CO2 flux of 0.2149 mu mol m(-2) s(-)1. The positive CO2 flux indicated the Haibei Alpine Meadow Ecosystem a source rather than a sink. The mass-balance model can be applied for other ecosystem even global carbon cycles because it neglects the complicated process of carbon metabolism, however just focuses on stable carbon isotopic compositions in any of compartments of carbon sources and sinks. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Floral closure may be induced by pollination and various other factors, but is rarely studied comprehensively. Different kinds of floral closure should have various effects on reproductive fitness of plants. Two contrasting types of floral closure were observed in the flowers of Gentiana straminea Maxim. in the eastern Qinghai-Tibetan Plateau. The first type occurred prior to pollination during both gender phases, in response mainly to decreasing air temperatures. Flowers closed when decreasing temperatures approached 20 degrees C and subsequently began to reopen the following day during mid-morning when air temperatures warmed to approximately 13-15 degrees C. This kind of floral closure can protect pollen grains on either stamens or stigmas, increasing fitness of both male and female. Following pollination, permanent floral closure occurred, although there was a delay between the dates of pollination and permanent closure, during which flowers continued to show temporary closure in response to low temperature episodes. The time required for permanent, pollination-induced closure varied according to the age of the gender phase, including a prolonged time before closure if pollination occurred early in the female phase. The retaining of permanent closed flowers increased both approaching (to inflorescences) and visiting (to unpollinated flowers) frequencies of individual plants when with fewer open flowers and the persisting corolla is further beneficial for seed sets of these pollinated flowers. Thus, two separate types of floral closure, one in response to environmental cues and the other in response to the age of each gender stage, appeared to have a strong influence on reproductive fitness in this species. These results revealed a different adaptive strategy of alpine plants in the sexual reproduction assurance in addition to the well-known elevated floral longevity, dominant role of more effective pollinators and increased reproduction allocation in the arid habitats.
Resumo:
The Ligularia-Cremanthodium-Parasenecio (L-C-P) complex of the Tussilagininae (Asteraceae: Senecioneae) contains more than 200 species that are endemic to the Qinghai-Tibetan Plateau in eastern Asia. These species are morphologically distinct; however, their relationships appear complex. A phylogenetic analysis of members of the complex and selected taxa, of the tribe Senecioneae was conducted using chloroplast (ndhF and trnL-F) and nuclear (ITS) sequences. Phylogenetic trees were constructed from individual and combined datasets of the three different sequences. All analyses suggested that Doronicum, a genus that has been included in the Tussilagininae, should be excluded from this subtribe and placed at the base of the tribe Senecioneae. In addition, the Tussilagininae should be broadly circumscribed to include the Tephroseridinae. Within the expanded Tussilagininae containing all 13 genera occurring in eastern Asia, Tussilago and NSPetasites diverged early as a separate lineage, while the remaining I I genera comprise an expanded L-C-P complex clade. We suggest that the L-C-P clade, which is largely unresolved, most likely originated as a consequence of an explosive radiation. The few monophyletic subclades identified in the L-C-P clade with robust support further suggest that some genera of Tussilagininae from eastern Asia require generic re-circumscriptions given the occurrence of subclades containing species of the same genus in different parts of the phylogentic tree due to homoplasy of important morphological characters used to delimit them. Molecular-clock analyses suggest that the explosive radiation of the L-C-P complex occurred mostly within the last 20 million years, which falls well within the period of recent major uplifts of the Qinghai-Tibetan Plateau between the early Miocene to the Pleistocene. It is proposed that significant increases in geological and ecological diversity that accompanied such uplifting, most likely promoted rapid and continuous allopatric speciation in small and isolated populations, and allowed fixation or acquisition of similar morphological characters within unrelated lineages. This phenomenon, possibly combined with interspecific diploid hybridization because of secondary sympatry during relatively stable stages between different uplifts, could be a major cause of high species diversity in the Qinghai-Tibetan Plateau and adjacent areas of eastern Asia. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The Study carried out in Xueshan Township, Guoluo prefecture, Qinghai Province, P. R. China from 1997 to 1999 on 1) Growth regulation of yak from born to adult and 1/4 wild yak from born to one and half year; 2) The effect of nursing or not on the growth and development of dam; 3) Meat performance of local yak; 4)Milk productivity of female yak. It can be served as the theory basis from which crossbreed improvement of yak and government decision could be drawn.
Resumo:
To assess the impact of livestock grazing on the emission of greenhouse gases from grazed wetlands, we examined biomass growth of plants, CO2 and CH4 fluxes under grazing and non-grazing conditions on the Qinghai-Tibetan Plateau wetland. After the grazing treatment for a period of about 3 months, net ecosystem CO2 uptake and aboveground biomass were significantly smaller, but ecosystem CH4 emissions were remarkably greater, under grazing conditions than under non-grazing conditions. Examination of the gas-transport system showed that the increased CH4 emissions resulted from mainly the increase of conductance in the gas-transport system of the grazed plants. The sum of global warming potential, which was estimated from the measured CO2 and CH4 fluxes, was 5.6- to 11.3-fold higher under grazing conditions than under non-grazing conditions. The results suggest that livestock grazing may increase the global warming potential of the alpine wetlands. (c) 2005 Elsevier Ltd. All rights reserved.