207 resultados para Polyethylene oxides
Resumo:
The addition of reducible metal oxides as promoters shows a positive effect on the catalytic behavior of lanthanum vanadate (LaVO4). A C3H6 yield increase of 6.5% is observed at 500 degreesC on molybdenum-promoted LaVO4, which can be attributed to the change of the redox properties, the blocking of the strong oxidation sites of the catalysts and to an increase of the accessibility of the labile oxygen toward the reactant. The influence of the catalyst preparation method and of the Mo loading as well as the additional promoting effect of CO2 in the gas feed was also examined.
Resumo:
A new program to characterize polyethylene glycol-modified (PEGylated) proteins is outlined using capillary zone electrophoresis (CZE). PEGylated ribonuclease A and lysozyme were selected as examples. Five separation procedures were compared to select out the mixed buffer of acetonitrile-water (1:1, v/v) at pH 2.5 as the best to characterize the PEGylated proteins without sample pretreatment. Polyethylene oxide (PEO) with a high molecular mass of 8X10(6) was applied to rinse the capillary to form a dynamic coating which would decrease the undesirable proteins adsorbed to the inner wall of the silica. The electroosmotic flow (EOF) mobility of the five procedures was determined, respectively. It is found that acetonitrile is mainly responsible for the good resolution of PEGylated proteins with the help of PEO coating in the semi-aqueous system. The low EOF mobility and current in the semi-aqueous system might also have some responsibility for the high resolution. The semi-aqueous procedure described in this paper also demonstrates higher resolution of natural proteins than aqueous ones. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
CO2-TPD was demonstrated an effective way to investigate the phase formation during pyrolysis for the preparation of composite oxides using metal-organic molecules as precursors. Based on the CO2-TPD results, it was found that calcination condition had deep effect on the carbonate formation and the minimum firing temperature to acquire pure phase composite oxide. An optimized calcination schedule was then developed.
Resumo:
Mixed ionic-electronic conducting (MIEC) oxides, SrFeCo0.5Ox, SrCo0.8Fe0.2O3-delta and La0.6Sr0.4Fe0.8Co0.2O3-delta have been synthesized and prepared on yttria-stabilized zirconia as anodes for solid oxide fuel cells. Power output measurements show that the anodes composed of such kinds of oxides exhibit modest electrochemical activities to both H-2 and CH4 fuels, giving maximum power densities of around 0.1 W/cm(2) at 950 degrees C. Polarization and AC impedance measurements found that large activation overpotentials and ohmic resistance drops were the main causes for the relative inferior performance to the Ni-YSZ anode. While interlayered with an Ni-YSZ anode, a significant improvement in the electrochemical performance was observed. in particular, for the SrFeCo0.5Ox oxide interlayered Ni-YSZ anode, the maximum power output reaches 0.25 W/cm2 on CH,, exceeding those of both SrFeCo0.5Ox and the Ni-YSZ, as anodes alone. A synergetic effect of SrFeCo0.5Ox and the Ni-YSZ has been observed. Future work is needed to examine the long-term stability of MIEC oxide electrodes under a very reducing environment. (C) 1999 Elsevier Science B.V. All rights reserved.