464 resultados para Platinum electrode
Resumo:
The La0.85MgxNi4.5Co0.35Al0.15 (0.05less than or equal toxless than or equal to0.35) system compounds have been prepared by are melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.(15) alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40degreesC.
Resumo:
The electrooxidation polymerization of phenothiazine derivatives, including azure A and toluidine blue 0, has been studied at screen-printed carbon electrodes in neutral phosphate buffer. Both compounds yield strongly adsorbed electroactive polymer with reversible behavior and formal potentials closed to 0.04 V at pH 6.9. The modified electrodes exhibited good stability and electrocatalysis for NADH oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 500 mV lower than that of the bare electrodes. Further, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5-100 muM.
Resumo:
The cobalt hexacyanoferrate film (CoHCF) was deposited on the surface of a glassy carbon (GC) electrode with a potential cycling procedure in the presence and absence of the cationic surfactant, cetyl trimethylammonium bromide (CTAB), to form CoHCF modified GC (CoHCF/GC) electrode. It was found that CTAB would affect the growth of the CoHCF film, the electrochemical behavior of the CoHCF film and the electrocatalytic activity of the CoHCF/GC electrode towards the electrochemical oxidation of dopamine (DA). The reasons of the electrochemical behavior of CoHCF/GC electrode influenced by CTAB were investigated using FTIR and scanning electron microscope (SEM) techniques. The apparent rate constant of electrocatalytic oxidation of DA catalyzed by CoHCF was determined using the rotating disk electrode measurements.
Resumo:
The electrooxidation polymerization of azure B on screen-printed carbon electrodes in neutral phosphate buffer was studied. The poly(azure B) modified electrodes exhibited excellent electrocatalysis and stability for dihydronicotinamide adenine dinucleotide (NADH) oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 400 mV lower than that at the bare electrodes. Different techniques, including cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy have been employed to characterize the poly (azure B) film. Furthermore, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5 muM to 100 muM.
Resumo:
Colloidal Au particles have been deposited on the gold electrode through layer-by-layer self-assembly using cysteamine as cross-linkers. Self-assembly of colloidal Au on the gold electrode resulted in ail easier attachment of antibody, larger electrode surface and ideal electrode behavior. The redox reactions of [Fe(CN)(6)]-/[Fe(CN)(6)](3-) on the gold surface were blocked due to antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.0 with various concentrations of antigen at 37degreesC for 30 min. Further, an amplification strategy to use biotin conjugated antibody was introduced for improving the sensitivity of impedance measurements. Thus, the sensor based oil this immobilization method exhibits a large linear dynamic range, from 5 - 400 mug/L for detection of Human IgG. The detection limit is about 0.5 mug/L.
Resumo:
A simple thermal process for the preparation of small Pt nanoparticles is presented, carried out by heating a H-2-PtCl6/3- thiophenemalonic acid aqueous solution. The following treatment of such colloidal Pt solution with Ru( bpy)(3)(2+) causes the assembly of Pt nanoparticles into aggregates. Most importantly, directly placing such aggregates on bare solid electrode surfaces can produce very stable films exhibiting excellent electrochemiluminescence behaviors.
Resumo:
A sensitive electrochemiluminescent detection scheme by solid-phase extraction at Ru(bpy)(3)(2+)-modified ceramic carbon electrodes (CCEs) was developed. The as-prepared Ru(bpy)(3)(2+)-modified CCEs show much better long-term stability than other Nafion-based Ru(bpy)(3)(2+)-modified electrodes and enjoy the inherent advantages of CCEs. The log-log calibration plot for dioxopromethazine is linear from 1.0 x 10(-9) to 1.0 x 10(-4) mol L-1 using the new detection scheme. The detection limit is 6.6 x 10(-10) mol L-1 at a signal-to-noise ratio of 3. The new scheme improves the sensitivity by similar to 3 orders of magnitude, which is the most sensitive Ru(bpy)(3)(2+) ECL method. The scheme allows the detection of dioxopromethazine in a urine sample within 3 min. Since Ru(bpy)(3)(2+) ECL is a powerful technique for determination of numerous amine-containing substances, the new detection scheme holds great promise in measurement of free concentrations, investigation of protein-drug interactions and DNA-drug interactions, pharmaceutical analysis, and so on.
Resumo:
The facile synthesis of the novel platinum nanoparticles/Eastman AQ55D/ruthenium(II) tris( bipyridine) (PtNPs/ AQ/Ru(bpy)(3)(2+)) colloidal material for ultrasensitive ECL solid-state sensors was reported for the first time. The cation ion-exchanger AQ was used not only to immobilize ECL active species Ru(bpy)(3)(2+) but also as the dispersant of PtNPs. Colloidal characterization was accomplished by transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), and UV-vis spectroscopy. Directly coating the as-prepared colloid on the surface of a glassy carbon electrode produces an electrochemiluminescence (ECL) sensor. The electronic conductivity and electroactivity of PtNPs in composite film made the sensor exhibit faster electron transfer, higher ECL intensity of Ru(bpy)(3)(2+), and a shorter equilibration time than Ru(bpy)(3)(2+) immobilized in pure AQ film. Furthermore, it was demonstrated that the combination of PtNPs and permselective cation exchanger made the sensor exhibite excellent ECL behavior and stability and a very low limit of detection (1 x 10(-15) M) of tripropylamine with application prospects in bioanalysis. This method was very simple, effective, and low cost.
Resumo:
Novel Au-Pt bimetallic flower nanostructures fabricated on a polyamidoamine dendrimers-modified surface by electrodeposition are reported. These polyamidoamine dendrimers were stable, and they assisted the formation of Au-Pt bimetallic nanoflowers during the electrodeposition process. These nanoflowers were characterized by field-emitted scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and electrochemical methods. FE-SEM images showed that the bimetallic nanoflower included two parts: the "light" and the "pale" part. The two parts consisted of many small bimetallic nanoparticles, which was attributed to the progressive nucleation process. Moreover, the "light" part contained more bimetallic nanoparticles. The morphologies of bimetallic nanoflowers depended on the electrodeposition time and potential and the layer number of assembled dendrimers. The average size of nanoflowers increased with the increase in electrodeposition time. The layer number of assembled dendrimers obviously affected the size and morphologies of the "pale" parts of deposited nanoflowers.
Resumo:
The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.
Resumo:
Stable electroactive film of poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works was assembled on indium oxide glass (ITO) successfully, and the cytochrome c was immobilized on the matrix by the electrostatic interactions. The adsorbed cytochrome c showed a good electrochemical activity with a pair of well-defined redox waves in pH 6.2 phosphate buffer solution, and the adsorbed protein showed more faster electron transfer rate (12.9 s(-1)) on the net-works matrix than those of on inorganic porous or even nano-materials reported recently. The immobilized cytochrome c exhibited a good electrocatalytic activity and amperometric response (2 s) for the reduction of hydrogen peroxide (H2O2). The detection limit for H2O2 was 1.5 mu M, and the linear range was from 3 mu M to 1 mM. Poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works was proved to be a good matrix for protein immobilization and biosensor preparation.
Resumo:
Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.
Resumo:
A novel "gold electrode-molecular wires-silver" junction was facilely fabricated for electrochemical study on the electron transportation through molecular wires. Rapid electron transportation through this sandwich-like structure was indeed observed by cyclic voltammograms and ac impedance measurements. Since rather reproducible and reliable results are easily available by electrochemical techniques, it would be an efficient and reliable test bed for electrochemical investigation of charge transportation through molecular wires in self-assembled monolayers on electrodes.
Resumo:
In the present work a nonmonotonic dependence of standard rate constant (k(0)) on reorganization energy (lambda) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k(0) on lambda is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of lambda, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the lambda dependence of k(0) for Process I is monotonic thoroughly, while for Process II on electrode surface the lambda dependence of k(0) could show a nonmonotonicity.