184 resultados para Perte de charge
Resumo:
The spectrochemistry of Eu2+-doped perovskite KMgF3 was examined and discussed. Eu2+ can replace some of the K+ in the KMgF3 crystal, and simultaneously the corresponding cation hole can be compensated with the F- or O2- in the matrix. The emission intensity of Eu2+ due to the f --> f transition increased when Na+, Rb+ or F- was doped in KMgF3:Eu2+. Two mechanisms of charge compensation were proposed. No obvious valence change of Eu2+ occurred in KMgF3:Eu2+ after calcinating at high temperature, e.g. 900-degrees-C. It was found that the valence stability of Eu2+ improved after incorporation into the matrix.
Resumo:
The net charges at atoms in the high-temperature superconductor TlBa2Can-1CunO2n+3 (n = 1 to 3) are calculated by means of the tight-binding approximation based on the EHMO method. The results indicate that the charge distribution in this kind of compounds possesses a specially layered arrangement. An insulating Ba-Ba layer is inserted between the Cu-O layer and the Tl-O layer. There may exist a weak coupling between the Cu-O layer and the Tl-O layer through the interaction of the same O(2) atom with both the Cu atom and the Tl atom. The existence of the Ca in the compounds can cause the valence fluctuation at the Cu atom. The calculated electric field gradients at atoms implies that the conducting electron or hole may move in the Cu-O layer, which is closest to the Tl-O layer, along the a-b plane.