191 resultados para Organic Chemical Synthesis (030503)
Resumo:
Uniform octahedral LuVO4 microcrystals have been successfully prepared through a designed two-step hydrothermal method. One-dimensional lutetium precursor was first prepared through a simple hydrothermal route. Subsequently, a well-shaped octahedral LuVO4 sample was synthesized at the expense of the wirelike precursors during the hydrothermal process. The whole process in this method was carried out in aqueous conditions without the use of any organic solvents, surfactant, or catalyst. The conversion process from nanowire precursor to octahedral product has been investigated in detail. The LuVO4 : Ln(3+) (Ln Eu, Dy, Sm, and Er) phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet light excitation or low-voltage electron beam excitation. Furthermore, this general and facile method may be of much significance in the synthesis of many other lanthanide compounds with polyhedral morphology.
Resumo:
Uniform NaLuF(4) nanowires and LuBO(3) microdisks have been successfully prepared by a designed chemical conversion method. The lutetium precursor nanowires were first prepared through a simple hydrothermal process. Subsequently, uniform NaLuF(4) nanowires and LuBO(3) microdisks were synthesized at the expense of the precursor by a hydrothermal conversion process. The whole process was carried out in aqueous condition without any organic solvents, surfactant, or catalyst. The conversion processes from precursor to the final products have been investigated in detail. The as-obtained Eu(3+) and Tb(3+)-doped LuBO(3) microdisks and NaLuF(4) nanowires show strong characteristic red and green emissions under ultraviolet excitation or low-voltage electron beam excitation. Moreover, the luminescence colors of the Eu(3+) and Tb(3+) codoped LuBO(3) samples can be tuned from red, orange, yellow, and green-yellow to green by simply adjusting the relative doping concentrations of the activator ions under a single wavelength excitation, which might find potential applications in the fields such as light display systems and optoelectronic devices.
Resumo:
A new compound, (C6H6N3)(7)((PMo12O40)-O-m)(PMo(v)Mo(11)(m)O40) (.) 2CH(3)CH(2)OH (.) 5H(2)O, was synthesized and characterized by means of elemental analyses, IR spectroscopy, H-1 NMR spectroscopy and single crystal X-ray diffraction. This is the first example of benzotriazole-polyoxometalates species. The compound crystallized in a triclinic space group P (1) over bar with a = 1. 8378 (4) nm. b = 1. 9078 (4) nm. c = 2.1037 (4) nm. alpha = 63.41 (3)degrees. beta = 64.31 (3)degrees. gamma = 68.38 (3)degrees. V = 5.803 (2) nm(3). Z = 2. R-1 = 0.0486, wR(2) = 0.1357. The X-ray crystallographic study showed that the crystal structure was constructed by electrostatic interactions and hydrogen bonds between dodecamolybdophosphorate anions and protonated benzotriazole cations. The electrochemical behavior and the reduction of nitrite and hydrogen peroxide clectrocatalyzed by the title compound were studied.
Resumo:
Organic-inorganic radical salt (DBTTF)(6)PMo12O40 . 2H(2)O was synthesized by electrocrystallization and characterized by IR spectrum, electronic spectrum and ESR technology, Its magnetic property, conductivity and crystal structure were determined. The title compound crystallized in a triclinic system with P1 space group, a = 1.378 7(7), b = 1.420 4 (2), c = 1.570 2(2) nm, alpha = 104.57(1)degrees, beta = 103.41(2)degrees, gamma = 95.80(2)degrees, V = 2.853(2) nm(3) Z = 1 and a final R = 0.072 7.
Resumo:
CO2-TPD was demonstrated an effective way to investigate the phase formation during pyrolysis for the preparation of composite oxides using metal-organic molecules as precursors. Based on the CO2-TPD results, it was found that calcination condition had deep effect on the carbonate formation and the minimum firing temperature to acquire pure phase composite oxide. An optimized calcination schedule was then developed.
Resumo:
Excessive accumulation of dissolved organic matter (DOM) in the culture ponds of Spirulina platensis is usually considered to be one of the potential factors affecting the production of S. platensis, however, we are not quite aware of effects of DOM on the growth and pigments synthesis of S. platensis. In the present study, S. platensis was grown in batch or semi-continuous cultures using the filtrate in the culture ponds that had not been renewed for years. It was found that disssolved organic carbon up to 60 mg/L did not bring about an inhibitory effect on the growth of S. platensis, but increased the contents of chlorophyll a and phycocyanin instead. However, further accumulation of dissolved organic matter could decrease the content of chlorophyll a.
Resumo:
A two-hot-boat chemical vapor deposition system was modified from a thermal evaporation equipment. This system has the advantage of high vacuum, rapid heating rate and temperature separately controlled boats for the source and samples. These are in favor of synthesizing compound semiconducting nano-materials. By the system, we have synthesized high-quality wurtzite single crystal GaN nanowires and nanotip triangle pyramids via an in-situ doping indium surfactant technique on Si and 3C-SiC epilayer/Si substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, highresolution transmission electron microscopy, energy- dispersive x-ray spectroscopy, and photoluminescence measurements. The GaN nanotip triangle pyramids, synthesized with this novel method, have potential application in electronic/ photonic devices for field-emission and laser.
Resumo:
Chemical-looping reforming (CLR) is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. It involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from combustion air to the fuel. Composite oxygen carriers of cerium oxide added with Fe, Cu, and Mn oxides were prepared by co-precipitation and investigated in a thermogravimetric analyzer and a fixed-bed reactor using methane as fuel and air as oxidizing gas. It was revealed that the addition of transition-metal oxides into cerium oxide can improve the reactivity of the Ce-based oxygen carrier. The three kinds of mixed oxides showed high CO and H-2 selectivity at above 800 degrees C. As for the Ce-Fe-O oxygen carrier, methane was converted to synthesis gas at a H-2/CO molar ratio close to 2:1 at a temperature of 800-900 degrees C; however, the methane thermolysis reaction was found on Ce-Cu-O and Ce-Mn-O oxygen carriers at 850-900 degrees C. Among the three kinds of oxygen carriers, Ce-Fe-O presented the best performance for methane CLR. On Ce-Fe-O oxygen carriers, the CO and H-2 selectivity decreased as the Fe content increased in the carrier particles. An optimal range of the Ce/Fe molar ratio is Ce/Fe > 1 for Ce-Fe-O oxygen carriers. Scanning electron microscopy (SEM) analysis revealed that the microstructure of the Ce-Fe-O oxides was not dramatically changed before and after 20 cyclic reactions. A small amount of Fe3C was found in the reacted Ce-Fe-O oxides by X-ray diffraction (XRD) analysis.