291 resultados para Mitochondrial genes
Resumo:
To test the hypothesis that mitochondrial DNA (mtDNA) variants contribute to the susceptibility to schizophrenia, we sequenced the entire mtDNAs from 93 Japanese schizophrenic patients. Three non-synonymous homoplasmic variants in subunit six of the ATP s
Resumo:
Synonymous codon bias has been examined in 78 human genes (19967 codons) and measured by relative synonymous codon usage (RSCU). Relative frequencies of all kinds of dinucleotides in 2,3 or 3,4 codon positions have been calculated, and codon-anticodon bin
Resumo:
728 human genes were divided to four groups according to the GC contents of their coding sequences (from GC<0.43 to GC>0.58). Examination of synonymous-codon bias in the 4 groups show that NTG (N represents any base of T, A, C, G) is most favored and NCG
Resumo:
Mitochondrial DNA restriction maps for 12 restriction enzymes of four species of muntjacs-Indian muntjac (M. muntjak), Gongshan muntjac (M. gongshanensis), black muntjac (M. crinifrons), and Chinese muntjac (M. reevesi)-were compared to estimate the phylogenetic relationships among them. Phylogenetic trees were constructed by both distance and parsimony methods. The two resulting trees share a similar topology, which indicates that the black muntjac and the Gongshan muntjac are closely related, followed by the Chinese muntjac; the Indian muntjac is the sister taxon to all the other muntjacs.
Resumo:
Muntjac deer (Muntiacinae, Cervidae) are of great interest in evolutionary studies because of their dramatic chromosome variations and recent discoveries of several new species. In this paper, we analyze the evolution of karyotypes of muntjac deer in the context of a phylogeny which is based on 1,844-bp mitochondrial DNA sequences of seven generally recognized species in the muntjac subfamily. The phylogenetic results support the hypothesis that karyotypic evolution in muntjac deer has proceeded via reduction in diploid number. However, the reduction in number is not always linear, i.e., not strictly following the order: 46-->14/13-->8/9-->6/7. For example, Muntiacus muntjak (2n = 6/7) shares a common ancestor with Muntiacus feae (2n = 13/14), which indicates that its karyotype was derived in parallel with M. feae's from an ancestral karyotype of 2n greater than or equal to 13/14. The newly discovered giant muntjac (Muntiacus vuquangensis) may represent another pa;allel reduction lineage from the ancestral 2n = 46 karyotype. Our phylogenetic results indicate that the giant muntjac is relatively closer to Muntiacus reevesi than to other muntjacs and may be placed in the genus Muntiacus. Analyses of sequence divergence reveal that the rate of change in chromosome number in muntjac deer is one of the fastest in vertebrates. Within the muntjac subfamily, the fastest evolutionary rate is found in the Fea's lineage, in which two species with different karyotypes diverged in around 0.5 Myr.
Resumo:
Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.
Resumo:
Organisms have variable genome sizes and contain different numbers of genes. This difference demonstrates that new gene origination is a fundamental process in evolutionary biology. Though the study of the origination of new genes dated back more than hal
Resumo:
Gene fission and fusion, the processes by which a single gene is split into two separate genes and two adjacent genes are fused into a single gene, respectively, are among the primary processes that generate new genes(1-4). Despite their seeming reversibi
Resumo:
The Otocephala, a clade including ostariophysan and clupeomorph telcosts, represents about a quarter of total fish species diversity, with about 1000 gencra and more than 7000 species. A series of recent papers have defended that the origin of this clade
Resumo:
Chinese species of the genus Niviventer, predominantly distributed in the southeastern Tibetan Plateau and in Taiwan, are a diverse group and have not yet received a thorough molecular phylogenetic analysis. Here, we reconstructed the phylogenetic relatio
Resumo:
The inherent interest on the origin of genetic novelties can be traced back to Darwin. But it was not until recently that we were allowed to investigate the fundamental process of origin of new genes by the studies on newly evolved Young genes. Two indisp
Resumo:
Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns
Resumo:
Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can
Resumo:
Background: Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection. Results: Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process. Conclusion: How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experiencedsub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.