290 resultados para Methane Consumption
Resumo:
The dehydro-aromatization of methane over a Mo-modified penta-sil type high-silica zeolite containing phosphoric and rare earth oxide (abbreviated as Mo/HZRP-1) was investigated. As a modification of HZSM-5, HZRP-1 is also a good support for the preparation of Mo-based zeolite catalysts, and is active for methane dehydro-aromatization. Mo/HZRP-1 catalysts are more active at high Mo loadings compared with Mo/HZSM-5 catalysts. Al-27 MAS NMR spectra of Mo/HZRP-1 reveal that there are two kinds of framework Al in HZRP-1. It is suggested that only the tetrahedral coordinated Al atoms in the form of Al-O-Si species in the zeolite, in the proton forms, are responsible for the formation of aromatics.
Resumo:
Steaming-dealuminated HZSM-5-supported molybdenum catalysts have been found to be high coking-resistance catalysts for methane aromatization reactions; compared with conventional catalysts, they give a much higher selectivity towards aromatics.
Resumo:
CH4-CO2-O-2 reforming to syngas in a never Ba0.5Sr0.5Co0.8Fe0.2O3.delta oxygen-permeable membrane reactor using LiLaNiO/gamma-Al2O3 as catalyst was successfully reported. Excellent reaction performance was achieved with around 92% methane conversion efficiency, 95% CO2 conversion rate, and nearly 8.5mL/min.cm(2) oxygen permeation flux. In contrast to the oxygen permeation model with the presence of large concentration of CO2 (under such condition the oxygen permeation flux deteriorates with time), the oxygen permeation flux is really stable under the CH4CO2-O-2 reforming condition.
Resumo:
A bench scale reaction test for methane aromatization in the absence of an added oxidant was performed and its reaction result evaluated based on the carbon balance of the system. The result was compared with those obtained from the micro-reaction test to ensure the accuracy of the internal standard analyzing method employed in this paper. The catalytic performances of modified Mo/HZSM-5 catalysts were examined. It was found that pre-treatment by steam on HZSM-5 weakened the serious deposition of coke, and pre-impregnation of n-ethyl silicate on HZSM-5 could improve the conversion of CH4, but had little effect on coke formation. A low temperature activation procedure including pre-reduction of the catalyst with methane prevents the zeolite lattice from being seriously destroyed by high valence state Mo species when the Mo loading is high. It was suggested that Mo2C species detected by XRD spectra was the active phase for CH4 aromatization.
Resumo:
A dense Ba0.5Sr0.5Co0.8Fe0.2O3-delta membrane tube was prepared by the extruding method. Furthermore, a membrane reactor with this tubular membrane was successfully applied to partial oxidation of methane (POM) reaction, in which the separation of oxygen from air and the partial oxidation of methane are integrated in one process. At 875degreesC, 94% of methane conversion, 98% of CO selectivity, 95% of H-2 selectivity, and as high as 8.8 mL/(min (.) cm(2)) of oxygen flux were obtained. In POM reaction condition. the membrane tube shows a very good stability.